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Decision Rule Guidance 
 

We created this guidance document to help anyone struggling with decision rules and measurement 

risk.  

Please feel free to share it with anyone. The information is not proprietary and is given in the hope that 

we, as a metrology community, can stop bad practices and start making better measurements.     

To quote the late and great Neil Pert, "If you choose not to decide, you still have made a choice."  

However, we hope you choose to read this document and implement its presentation.   

 

Image Courtesy of imgflip.com 
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Introduction 
 

There are also numerous documents written on Decision Rules; however, the authors have found that 

many of these guidance documents are hard to understand for most people. Thus, we decided to write 

our own guidance with the specific hope of giving the foundational requirements and helping with the 

calculations so anyone can implement decision rules where measurement uncertainty is taken into 

consideration.   

The basis for good metrology can be summed up by considering the three pillars of measurement.  

 

Figure 1 Achieving Measurement Confidence Requires all Three Circles to be Understood. 
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Three Pillars of Measurement: 

 

1. Measurement Uncertainty: This involves how robust (thorough) the evaluation of measurement 

uncertainty is as it helps support the next two pillars of measurement. This refers to the extent 

to which measurements can vary and provides an estimate of the confidence in a measurement 

result. It's crucial for decision-making as it helps users understand the reliability of a 

measurement.  

Note: Over-evaluating measurement uncertainty can result in the measured value of the property 

being nonconforming when it is conforming. Under evaluating measurement uncertainty can result 

in the measured value of the property being conforming when it is nonconforming.  

 

2. Metrological Traceability: This involves ensuring that measurements are traceable to the 

International System of Units (SI), creating a documented unbroken chain of calibrations, each 

contributing to the measurement uncertainty. In some cases, metrological traceability is 

indirectly traceable to the SI (e.g. test measurement uncertainty).   

Note: The attainment of metrological traceability in the measurements you conduct is contingent on the 

proper calculation and statement of measurement uncertainty at every preceding tier leading up to the 

specific measurements being made. The testing laboratory example might involve mixing compounds.  

3. Measurement Decision Rules: Decision rules determine whether a measurement result is fit for 

its intended purpose taking measurement uncertainty into consideration (more justification for 

robust evaluation of measurement uncertainty). These rules should consider acceptable risks 

(depending on the application), ensuring that measurement results are used to make conformity 

decisions. 

 

When these pillars are addressed properly, it ensures high confidence in measurement results. 

Inaccurate, ill-defined conformity decisions can have serious consequences, such as engineering 

disasters, financial losses, and potential loss of life. 

Measurements play a critical role in decision-making across various industries. When measurements are 

accurate, traceable, and have well-defined decision rules, it instills confidence in the results, leading to 

safer products and services and reducing risks for consumers and suppliers alike. 

Both consumers and suppliers of measurement services should be aware of measurement risk and the 

importance of adhering to consensus standards and guidance documents for better decision-making. 

When measurement results ensure confidence, it reduces risks and ensures the quality and safety of 

products and services. 
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Definitions 
 

ILAC G8:2019/2019 definitions: (1) 

Tolerance Limit (TL or L) (Specification Limit): specified upper or lower bound of permissible values of a 

property. 

Measured Quantity Value: quantity value represents a measured result.    

Acceptance Limit (AL): specified upper or lower bound of permissible measured quantity values. 

LAL – Lower Acceptance Limit 

UAL – Upper Acceptance Limit 

Guard band (w): the interval between a tolerance limit and a corresponding acceptance limit where 

length 𝑤=|𝑇𝐿−𝐴𝐿|.  

Decision Rule: is a rule that describes how measurement uncertainty is accounted for when stating 

conformity with a specified requirement. (ISO/IEC 17025:2017 3.7 "rule that describes how 

measurement uncertainty is accounted for when stating conformity with a specified requirement). 

TUR - the ratio of the tolerance, TL, of a measurement quantity, divided by the 95 % expanded 

measurement uncertainty of the measurement process where 𝑇𝑈𝑅 = 𝑇𝐿/𝑈. (Please note that this 

definition is slightly different than the one cited in ANSI/NCSLI Z540.3: 2006). 

JCGM 106:2012 definitions:(2)  

Measurement Capability Index: Tolerance divided by a multiple of the standard measurement 

uncertainty associated with the measured value of a property of an item. 

Specific consumer's risk: probability that a particular accepted item is non-conforming. 

Specific producer's risk: probability that a particular rejected item is conforming. 

Global consumer's risk: probability that a non-conforming item will be accepted based on future 

measurement result. 

Global producer's risk: probability that a conforming item will be rejected based on future 

measurement result. 

Note: Looking at the math for global risk, End of Period Reliability (EOPR) is not well explained with 

these definitions. EOPR covers endless measurements from the past to the future. Historical data is 

crucial for global risk, except when starting a new manufacturing line. 

ASME B89.7.3.1-2001 definitions:(3) 

Binary decision rule: a decision rule with only two possible outcomes, either acceptance or rejection.  

(A non-binary decision rule can add conditional acceptance and rejection) 
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N:1 decision rule: a situation where the width of the specification zone is at least N times larger than the 

uncertainty interval for the measurement result.  

Note: The inclusion of this rule is prompted by its presence in certain standards and its potential for 

misinterpretation. It is crucial to highlight that if the N:1 ratio is primarily intended for Global Risk 

assessment, in most cases the decision rule must consistently be complemented by EOPR (End of Period 

Reliability) data. In cases involving Specific Risk, this serves more as a prerequisite for conducting 

measurements within a straightforward acceptance or shared risk framework. In practical terms, those 

employing N:1 could potentially transfer up to 50% of the risk to the subsequent measurement tier. 

Guard band: the magnitude of the offset from the specification limit to the acceptance or rejection zone 

boundary. 

Specification zone (of an instrument or workpiece): the set of values of a characteristic between, and 

including, the specification limits. 

Acceptance zone: the set of values of a characteristic, for a specified measurement process and decision 

rule, that results in product acceptance when a measurement result is within this zone. 

Transition zone: the set of values of a characteristic, for a specified measurement process and decision 

rule, that is neither in the acceptance zone nor rejection zone. 

Other Definitions: 

Measurement Uncertainty:  

Measurement uncertainty quantifies the doubt about the measured value. This value is derived through 

a systematic process that evaluates various contributing factors, including the uncertainty inherent in 

the measurement standards and the uncertainty introduced by the measurement process.  

This comprehensive approach ensures that the measurement uncertainty evaluates all significant 

sources of error, providing a more reliable representation of the measured value's possible range. 

Note: This definition of Measurement Uncertainty is from the authors' point of view in hopes of providing 

a simplified explanation of the term.   

End of Period Reliability (EOPR) is the number of calibrations resulting in as-received IN – Tolerance 

Results divided by the total number of calibrations.   
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ISO/IEC 17025 References to Decision Rules  
 

Sections and text from ISO/IEC 17025:2017 mentioning decisions rule(s)(4) 

3.7 decision rule that describes how measurement uncertainty is accounted for when stating conformity 

with a specified requirement. 

7.1.3 When the customer requests a statement of conformity to a specification or standard for the test 

or calibration (e.g. pass/fail, in-tolerance/out-of-tolerance), the specification or standard and the 

decision rule shall be clearly defined. Unless inherent in the requested specification or standard, the 

decision rule selected shall be communicated to, and agreed with, the customer. 

NOTE For further guidance on statements of conformity, see ISO/IEC Guide 98-4 (JGCM 106:2012). 

7.8.6.1 When a statement of conformity to a specification or standard is provided, the laboratory shall 

document the decision rule employed, taking into account the level of risk (such as false accept and false 

reject and statistical assumptions) associated with the decision rule employed, and apply the decision 

rule. 

NOTE Where the decision rule is prescribed by the customer, regulations or normative documents, a 

further consideration of the level of risk is not necessary. 

7.8.6.2 The laboratory shall report on the statement of conformity, such that the statement clearly 

identifies: 

a) to which results the statement of conformity applies; 

b) which specifications, standards or parts thereof are met or not met; 

c) the decision rule applied (unless it is inherent in the requested specification or standard). 

NOTE For further information, see ISO/IEC Guide 98-4. 

A.2.3 Measurement standards that have reported information from a competent laboratory that 

includes only a statement of conformity to a specification (omitting the measurement results and 

associated uncertainties) are sometimes used to disseminate metrological traceability. This approach, in 

which the specification limits are imported as the source of uncertainty, is dependent upon: 

— the use of an appropriate decision rule to establish conformity; 

— the specification limits subsequently being treated in a technically appropriate way in the uncertainty 

budget. 

The technical basis for this approach is that the declared conformance to a specification defines a range 

of measurement values, within which the true value is expected to lie, at a specified level of confidence, 

which considers both any bias from the true value, as well as the measurement uncertainty. 

EXAMPLE The use of OIML R 111 class weights to calibrate a balance. 
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Metrological Traceability and Measurement Uncertainty   
 

 

Figure 2 SI Pyramid Example courtesy of Morehouse. 

 

Metrological traceability relies on tracing the measurement chain back to SI units. The proper way to 

claim metrological traceability is to trace each calibration back to the SI through a documented, 

unbroken chain of calibrations, each contributing to the measurement uncertainty. The chain will often 

end with a National Metrology Institute (NMI), such as NIST, which is recognized under the Committee 

International de Poids et Mesures (CIPM) Mutual Recognition Arrangement (MRA). 

To meet the metrological traceability requirements, measurement uncertainty must be properly 

evaluated, taking into consideration the minimum number of contributors.  

Measurement uncertainty is the doubt about the true value of the measurand that remains after making 

a measurement. Expanded Uncertainty of the Measurement Process is the non-bias uncertainty 

ascribed to the result of a measurement at a particular test point.  

If you are accredited to ISO/IEC 17025:2017, the uncertainty of the measurement is required to be 

reported on a certificate of calibration. This is essential because your customer may want you to make a 

statement of conformance on whether the device or artifact is in tolerance. When that conformity 

assessment happens, measurement uncertainty must be considered.  

Measurement uncertainty is required to establish your metrological traceability. It is crucial because you 

want to know that the laboratory calibrating your device or artifact can perform the calibration. If you 

need a device with less than 0.02 %, then you must use a calibration provider that gives you the best 

chance of achieving that result. If the calibration provider has a stated measurement uncertainty of 0.04 

%, then mathematically, they are not the right calibration lab to calibrate or verify your device or 

artifact.  
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Knowing the Measurement Uncertainty is crucial for calculating the Test Uncertainty Ratio (TUR) or 

Measurement Capability Index (Cm) which is often used to determine measurement risk. More 

information on the calculation of measurement uncertainty is found later in this document. 

Note: Because of the confusion over the definition of TUR throughout the years, many documents use the 

term Measurement Capability Index (Cm).   

Measurement Risk   
 

Bad measurements can lead to big problems. Just think about some of the disasters due to poor 

decision-making. 

The BP oil refinery explosion in Texas, the Hubble telescope's focus issue, the Space Shuttle explosion, a 

Stealth Bomber crash, Cox Health's overdosing of 152 cancer patients, Paris trains, and another BP oil rig 

disaster are all examples of tragedies that could have been prevented with better measurement 

practices. 

The 2016 movie Deepwater Horizon is an excellent example of showcasing how a blowout caused an 

explosion, killing 11 people and resulting in a catastrophic oil leak. 

Note: While several examples are extreme and represent worst-case scenarios, it's essential to 

recognize that numerous practical situations exist where effective decision rules prevent product recalls 

and enhance safety and can result in substantial cost savings for companies that employ them 

judiciously.  

The essence of decision risk and conformity assessment lies in ensuring the final product's quality, 

accuracy, and durability. When decision risk is appropriately applied, manufacturers and society stand to 

gain billions of dollars over time by enjoying high-quality products that withstand the test of time, 

instead of those prone to malfunction after a few years or months. 
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Figure 3 Five Rules to Reduce Measurement Risk courtesy of Morehouse. 

 
So, how can we avoid these issues? Here are five simple rules to reduce your measurement risk: 
 

1. Understanding the Right Requirements: This first rule involves knowing what is needed to 
accomplish the task. The more accurate the system, the higher the costs to procure and 
calibrate the equipment. Buying the wrong equipment will often lead to more frequent 
calibrations, often costing more and reducing availability. The recommendation before any 
purchase is to discuss the intended purchase with those calibrating it. The results of procuring 
the wrong equipment can be extremely costly. Most of these wrong choices could easily be 
remedied if metrology were consulted before the actual procurement. Technicians often will 
know what equipment frequently fails calibration.  
 

Note: All authors have observed and heard stories from others that the previous person bought the 

wrong equipment, and now we are stuck with it. Amazingly, some know the issues, management will not 

correct them, and others know how often the wrong choice of equipment occurs.  

 
2. Purchasing the Right Equipment: Not all tools are created equal. Make sure you're using the 

right equipment for the job. This includes the appropriate measurement uncertainty and 
metrological traceability criteria using qualified calibration providers. Using the wrong 
equipment or calibration provider can lead to inaccurate measurements and more significant 
problems. Continually evaluate externally provided products and services to minimize the risks 
involved. 
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3. Have the Right Processes: This rule requires a training program and proof of training (records) 
to validate the individuals calibrating or using the equipment. A process should be in place that 
ensures all aspects of the standards are being carefully satisfied in the calibration process, such 
as the use of the proper auxiliary equipment (test adapters, leads, etc.). The robustness of the 
process should include good practices such as control chart implementation and calibration 
interval evaluation.  
 

4. Check Your Work: Technicians are human, and humans make mistakes. Always double-check 
your measurements to make sure they're accurate. It's easy to overlook a small error, but that 
small error can have big consequences. So, take the time to verify your work. A good verification 
and validation process will aid, as well as a good checklist. 
 

5. Stay Vigilant/Continuous Improvement: Don't let success make you complacent. Always be on 
the lookout for potential risks and take the necessary precautions to prevent them. Control 
chart monitoring processes are a good practice for ensuring and monitoring these deviations. 
It's easy to let your guard down when things are going well, but that's when mistakes can 
happen. So, stay alert and stay safe. 

 
 
The first three requirements are the legs of the stool. If one is neglected, it will be hard to sit on the 
stool. Checking the work helps ensure accuracy. The floor or support structure is continually improving 
to keep everything in place. 
 
A tremendous foundational tool is a measurement assurance program based on control charts and a 
well-laid-out Proficiency Test or a Inter Laboratory Comparison plan. 
 
Remember, it's better to be safe than sorry. 
 
Following these rules can help reduce your measurement risk and prevent avoidable potential disasters. 
It's all about being proactive and taking the necessary steps to ensure accuracy and safety. 
 
After all, the ultimate objective is to develop products that function effectively and are safe for use. 
Those adhering to established guidelines will clearly understand the necessary equipment—in terms of 
physical tools and the calibration standards required in a laboratory setting—to validate the accuracy of 
reported measurement uncertainty. This comprehensive approach ensures not only the functionality 
and safety of the products but also builds credibility by providing clear and defendable measurement 
data. 
 
It's often claimed that overlooking an error in one stage of a process amplifies the effort needed to 

rectify it in the subsequent stage tenfold. Hence, implementing additional checks and balances can 

significantly reduce the likelihood of errors. Disregarding process protocols frequently leads to greater 

expenditure on developing bespoke solutions that are challenging to evaluate or opting for off-the-shelf 

units unable to effectively mitigate risks. For instance, a company might save $15,000.00 by purchasing a 

piece of equipment, only to incur a staggering $1,000,000.00 in scrap costs due to oversight.  
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Uncertainty, Specifications, and Decisions  
 

Measurement Uncertainty: The doubt about the true value of the measurand that remains after making 

a measurement. 

- Every measurement—even the most careful—always has a margin of doubt. 

- Uncertainty is the inherent limitation of a measurement process, due to instrumentation and 

process variation. 

- Measurement uncertainty does not include mistakes (e.g. oversights, omissions, 

miscalculations). 

- Quantifies the error associated with the measurement process. 

 

Figure 4 Image Courtesy of Scott Mimbs  

 

Demonstration of conformity requires a correct decision. Making a correct decision requires a robust 

evaluation of measurement uncertainty. 

The probability of whether a decision is "good" or "bad" can be determined by: 

- The amount of uncertainty in the measurement process based on a robust evaluation. 

- Where the measurement result lies with respect to the tolerance limit (e.g., ± TL)  

- Knowledge acquired from previous measurements of similar items (i.e., a priori distribution) 
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Figure 5 Image Courtesy of Scott Mimbs. 

 

 JCGM 106:2012 states:(5)  

If the true value of the property lies within the tolerance interval, it is said to be conforming, and non-

conforming otherwise. 

JCGM 106:2012 states:(6) 

Accepting or rejecting an item when the measured value of its property is close to a tolerance limit may 

result in an incorrect decision and lead to undesirable consequences. 

 

Figure 6 Image adapted from JCGM 106 Example. 

 

Note: A graphic indicating "accept" or "reject" without risk implies that while there might still be a 

minimal level of risk, it is considered negligible. The expectation is that there is a close to 100 % certainty 

that the measurement outcome will result in either acceptance or rejection with a very high level of 

confidence. 

JCGM 106:2012 states:(7) 

Choosing the tolerance limits and acceptance limits are business or policy decisions that depend upon 

the consequences associated with deviations from intended product quality. 
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The guiding principle for default decision rules is the measurement uncertainty always counts against 

the party who is verifying conformity or nonconformity…  

 

 

Figure 7 Adopted from ISO 14253-1:2017, Decision rules for verifying conformity or nonconformity with 
specifications. (8) 

 

 

Measurement uncertainty influences the zones where conformity or nonconformity can be verified. 

The above figure is a great demonstration of the concept of measurement uncertainty and how it can 

impact the conformance zone. Measurement process uncertainty is directly proportional to consumer 

and producer risk. As measurement process uncertainty decreases, the risk decreases. 

The conformance or acceptance zone shown is an example of a Specific Risk model.  

Note: There are several other examples of decision rules that can be used to set the acceptance limits 

and control the measurement risk. The basic three that most others are derived from are found in the 

next section. 
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Some Acceptable Examples of Decision Rules (3 Methods of Guard 

Banding)   
 

At the risk of being oversimplistic, we will highlight 3 specific decision rules that cover most applications. 

All three decision rules are covered in greater detail in different sections of this document.  

Specific Risk (single probability distribution) is described in the next section. This provides conservative 

acceptance limits where meager historical data is unavailable or unobtainable. 

Managed Guard Bands –Often referred to as Method 6 which was developed by Michael Dobbert. This 

method aims to achieve the Z540.3 requirement of a PFA of less than 2 % for all combinations of TUR 

and OOT rates. 

Method 1, Unconditional PFA Estimation – Test Point Population Data. 

The 3rd method, which has the most flexibility, is the most complex method to implement in a metrology 

laboratory system.  

Method 1 provides an unconditional PFA estimate that is applied to a population of “like calibration 

processes” at the test point level. What this means is that the population or average PFA is estimated 

for each test point of the same M&TE model and manufacturer and evaluated for compliance, prior to a 

measurement.  

Specific Risk   
 

Specific Risk in metrology, mainly focusing on the Probability of False Accept (PFA) and Probability of 

False Reject (PFR). 

These concepts are crucial in the decision-making process based on measurement results. 

Specific Risk, as the term suggests, is a risk specific to a given test measurement result. 

It is often thought of as controlling the quality of individual workpieces or examining the individual 

measured values on the test, measurement, and diagnostic equipment (TMDE). 

It is the probability that a test measurement result indicates a product is within specifications when it is 

actually outside specifications. 

This Risk arises due to the inherent uncertainty in the test measurement result. 
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Figure 8 Specific Risk Image Courtesy of Morehouse Instrument Company. 

 

To visualize this, consider the test measurement uncertainty's Probability Density Function (PDF). 

The Specific Risk is illustrated where the upper tail of the probability curve falls above the upper 

specification limit, and the lower tail of the probability curve falls below the lower specification limit. 

The area under this curve represents the probability (Specific Risk) of incorrectly accepting a product 

given this measurement result. 

The above example uses an extreme scenario where the expanded measurement uncertainty (U95.45%) 

equals the tolerance limit. 

The Guard Band multiplier is calculated for the desired conformance probability. In this case, that is 

95.45 %. 

 

 

Figure 9 Specific Risk Image Courtesy of Morehouse Instrument Company. 

 

In our second example above, we have changed the 95.45% Expanded Measurement Uncertainty; this 

time, we have a 5:1 ratio. We changed the desired performance probability to 97.73 %, limiting our Risk 

to 2.275 % recommendation from ANSI Z540.3 and other documents. 
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This might throw some people for a loop, meaning they thought the recommendation was 2 %. 

Well, it is, though all the calculations were based on a coverage factor equaling 95.45 %, and when we 

subtract 95.45 % from 100 %, we get 4.55 %. 

If we take half 4.55 %, we get 2.275 %. Now, back to our examples. 

When we change the measurement location to the exact location our GB Multiplier indicates, we can 

record the measured value and have the Risk (probability of non-conformance) equal 2.275%. 

Some might be saying, what is a Guard Band multiplier? 

Several examples in ILAC G8, JCGM 106, UKAS LAB 48, ISO 14253-5, and ASME B89.7.4.1 explain Guard 

band multipliers. 

 

 

Figure 10 Specific Risk Image Courtesy of Morehouse Instrument Company. 

  

The simplest explanation comes from ASME B89.7.4.1, which discusses a Guard Band multiplier being 

set to assure conformance probability. ASME refers to gauging (or test) limits and guard bands. The 

gauging limits define a reduced acceptance zone. 

The Guard Band is chosen to set the maximum limit to achieve a desired conformance probability. 

When the measured value is at the upper acceptance limit (the upper gauging limit above), the area 

outside the curve will equal the desired maximum risk. In contrast, the rest of the curve inside of the 

Tolerance Limit will be the probability of conformance to the specification. (9) 

Note: More information on the Guard Band multiplier is found in the Specific Risk calculation section. 
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Simple Acceptance (Shared Risk) is likely not what you want. 
 

 

Figure 11 Specific Risk Image Courtesy of Morehouse Instrument Company. 

 

Several in the industry often take a "shared risk" approach, and some disguise this by stating a Guard 

Band of w=0 has been applied. What that phrase means is that NO Guard Band has been applied.  

What "shared risk" means is as long as the measured value is less than or equal to the tolerance, the 

value is reported, and it is agreed upon as being in conformance, though many are not applying a Guard 

Band (w=0) and taking the approach that the end-user can decide if it in or out of conformance. 

ISO/IEC 17025:2017 Clause 7.1.3 dictates that the customer must agree upon the decision rule when a 

statement of conformity is to be made. 

The customer shall specify the acceptance criteria for conformity. The decision rule(s) requirement is 

unnecessary if no conformance criteria is specified. (10) 

Simply put, regarding decision rules, if you choose not to decide, you still have made a choice (Shared 

Risk). 

Under this scenario, the consumer accepts the risk of 50 % or more Probability of False Accept (PFA). If 

the UUT propagates measurement uncertainty further, a PFA higher than 50 % is more likely to occur. 

However, the test and calibration provider must still report the measurement result and its associated 

measurement uncertainty. 

Thus, as a customer, you could have a much higher level of Risk than you wanted. 
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PFA and PFR as They Relate to Specific Risk  
 

  

Figure 12 Image courtesy of Dilip Shah at E= mc3 Solutions. 

 

The probability of false acceptance (PFA), also known as Consumer's Risk or Type II error, is the 

probability that a test measurement on any product results in an incorrect pass determination. 

On the other hand, the Probability of False Reject (PFR), also known as Producer's Risk, Type I error, is 

the probability that a measurement result indicates a product is outside the limits when its actual value 

is within the acceptance criteria. 

Both PFA and PFR are integral to understanding and managing Specific Risk. 

They provide a quantitative measure of the risk associated with a particular measurement result, guiding 

the decision-making process. 
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Figure 13 Specific Risk Image Courtesy of Morehouse Instrument Company. 

 

For instance, a high PFA indicates a high risk of incorrectly accepting a product that is out of acceptance 

criteria. 

This could lead to potential issues, such as product failures, impacting safety, or customer 

dissatisfaction. 

On the other hand, a high PFR indicates a high risk of incorrectly rejecting a product that is within 

acceptance criteria. 

This could lead to unnecessary rework when it is not required. 

In the case of shared risk, when the measured value is equal to the tolerance limit, the Specific 

Probability of False Reject Risk (PFR) is also 50 %. 

This is the worst scenario as it is a compilation of both PFA and PFR. This could lead to any of these:  

• Unnecessary rework (cost!!) 

• Product safety  

• Liability issues 

• Loss of reputation 

By understanding and managing PFA and PFR, laboratories and their personnel can make more informed 

decisions about accepting or rejecting equipment based on the measurement result. 

This can significantly improve the reliability and accuracy of measurement results, thereby enhancing 

the overall quality of measuring equipment and services. 
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By conducting a robust evaluation of measurement uncertainty and using that information to formulate 

an appropriate level of risk, one can implement the decision rule that considers both the PFA and PFR to 

make a conformity decision.  

An example may be:  Accept when PFA is less than or equal to 10 %, otherwise Reject. 

The application of decision rules stating the acceptable level of risk by the customer (stakeholder) to 

make statements of conformity (or nonconformity) provides more confidence in the decision-making. 

Therefore, the customer (stakeholder) takes the Specific Risk associated with statements of conformity, 

i.e., PFA & PFR. 

Specific Risk – Calculating PFA   
 

To Calculate PFA, the Excel function is NORM.DIST.   

To calculate the PFA for the Upper Tolerance Limit (PFA Risk Upper): 

Risk Upper = NORM.DIST(Measured value, Upper Tolerance Limit, Standard Uncertainty, TRUE) 

To calculate the PFA for the Lower Tolerance Limit (PFA Risk Lower): 

Risk Lower = 1- NORM.DIST(Measured value, Lower Tolerance Limit, Standard Uncertainty, TRUE) 

Total PFA = Risk Upper +Risk Lower 

 

Example PFA Calculations  
 

A 10,000 N load cell has a tolerance of ± 0.1 % of full scale.  

The measured value is 10,000 N.  

The Expanded Measurement Uncertainty is 10N for a coverage factor of k = 2. 

Upper Tolerance = 10,010 N 

Lower Tolerance = 9,990 N  

Measured Value = 10,000 N 

Standard Uncertainty = 5 N 

Risk Upper = NORM.DIST(10000, 10010, 5, TRUE) = 2.275 % 

Risk Lower = 1- NORM.DIST(10000, 9990, 5, TRUE)) = 2.275 %  

Total Risk = 4.550 % 
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Specific Risk Calculations – Two-Sided  
 

There are numerous methods to calculate acceptance limits. The method presented below works for 

any level of risk. If the stakeholder says they want 10 % risk, it works; if they want 1 % risk, it works. 

Therefore, we believe this is the defacto method that should be used for calculating risk.  

ASME B89.7.4.1-2005 provides an explicit method of setting the width of the acceptance zone for a 

specified probability of conformance. 

The Guard Band is a multiple of the expanded uncertainty of the measurement process, 𝑔=ℎ𝑈, where 

the Guard Bands are the same size, 𝑔𝐿 =𝑔𝑈 = 𝑔. The guard band multiplier (ℎ) is given by: 

 

ℎ =
1

2
𝜙−1(𝑃𝐶) 

 

Formula to Calculate Specific Risk. 

Where: 

  Φ-1  ( ) is the inverse standard normal distribution function. The Excel function to calculate  Φ-1 ( )  is 

NORMSINV (). (or NORM.S.INV() for Excel version 2010 or higher) 

ℎ is the guard band multiplier 

U  is the Expanded Uncertainty 

Pc is the probability of conformance 

GU is TU – ℎ𝑈 

TU is the Upper Tolerance Limit  
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Figure 14 Image Adopted From ASME B89.7.4.1-2005. 

 

The Guard Band is chosen so that a desired portion of the probability of conformance area under the 

curve lies inside the tolerance zone. (11) 

Example Specific Risk Calculations – Two-Sided  
 

We are trying to calculate the acceptance zone using a Guard Band to limit our risk to a 2.5 % limit 

between – 1 (Lower Tolerance Limit) and + 1 (Upper Tolerance Limit) units with a standard 

measurement uncertainty of 0.125 units.  

 

Figure 15 Conformance Probability Table Courtesy Morehouse Instrument Company. 

 

0.0668 -0.750

0.1590 -0.499

0.3085 -0.250

0.5000 0.000

0.6914 0.250

0.8000 0.421

0.8500 0.518

0.9000 0.641

0.9500 0.822

0.9545 0.845

0.9750 0.980

0.9800 1.027

0.9900 1.163

0.9990 1.545

Conformance Probability Table

Conformance 

Probability , Pc

Guard Band Multiplier, r 

Two Sided
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Our Standard Measurement Uncertainty (k=1) is 0.125 units.  

This Standard Measurement Uncertainty is applied as Expanded Measurement Uncertainty at a 

Coverage Factor of 2 to express at a 95.45 % Confidence Interval assuming infinite degrees of freedom. 

The customer has told us to fail anything with more than 2.5 % risk per side.  

Thus, we are calculating our Conformance probability for 97.50 % (100 % - 2.5 %) Confidence for 

symmetrical tolerance. We calculate the Guard Band Multiplier using the Excel formula of 

NORM.S.INV(0.975)/2 resulting in 0.980. 

We then use this value of 0.980 as our GB Multiplier as follows.  

For the Guard band upper limit, we have 1 – (GB Multiplier * Coverage Factor * Standard Measurement 

Uncertainty) 

1 – (0.980 * (2 * 0.125)) = 0.7550 

For the Guard band lower limit, we have -1 + (GB Multiplier * Coverage Factor *Standard Measurement 

Uncertainty) 

-1 + (0.980 * (2 * 0.125)) = -0.7550 

Our Acceptance Zone is to pass any measured value between -0.7550 and + 0.7550. 

The formula can be simplified to: 

 Acceptance Limit = Tolerance Limit ± Guard band multiplier * Expanded Measurement Uncertainty.    

ILAC-G8:09/2019 states, "Often the Guard Band is based on a multiple r of the expanded measurement 

uncertainty U where 𝑤 = 𝑟𝑈. For a binary decision rule, a measured value below the acceptance limit  

AL = TL – w is accepted." (12) 
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Specific Risk Calculations – One-Sided  
 

We are trying to calculate the acceptance zone using a Guard Band to limit our risk to a 5 % limit 

between with either a lower tolerance or upper tolerance. In this example we are using – 1 (Lower 

Tolerance Limit) or + 1 (Upper Tolerance Limit) units with a standard measurement uncertainty of 0.125 

units.  

 

 

Figure 16 Conformance Probability Table Courtesy Morehouse Instrument Company. 

 

What we are calculating is our Conformance probability for 97.50 % Confidence using a single-sided 

tolerance. We calculate the Guard band Multiplier by using the formula in Excel of NORM.S.INV(0.975). 

Our Standard Measurement Uncertainty (k=1) is 0.125 units.  

This Standard Measurement Uncertainty is applied as Expanded Measurement Uncertainty at a 

Coverage Factor of 2 to express at a 95.45 % Confidence Interval assuming infinite degrees of freedom. 

Thus, we are calculating our Conformance probability for 97.50 % (100 % - 2.5 %) Confidence for 

symmetrical tolerance. We calculate the Guard Band Multiplier using the Excel formula of 

NORM.S.INV(0.975) resulting in 1.960. 

We then use this number of 1.960 as our GB Multiplier as follows.  

If the Single Sided Tolerance is an upper tolerance: 

For the Guard band upper limit, we have 1 – (GB Multiplier * Coverage Factor * Standard 

Measurement Uncertainty) 

1 – (1.960 * (2 * 0.125)) = 0.51 

0.0668 -1.500

0.1590 -0.999

0.3085 -0.500

0.5000 0.000

0.6914 0.500

0.8000 0.842

0.8500 1.036

0.9000 1.282

0.9500 1.645

0.9545 1.690

0.9750 1.960
0.9800 2.054

0.9900 2.326

0.9990 3.090

Conformance Probability Table

Conformance 

Probability , Pc

Guard Band Multiplier, r 

Single - Sided
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If the Single Sided Tolerance is a lower tolerance: 

For the Guard band lower limit, we have -1 + (GB Multiplier * Coverage Factor *Standard 

Measurement Uncertainty) 

-1 + (1.960 * (2 * 0.125)) = -0.51 

The formula can be simplified to:  

Acceptance Limit = Tolerance Limit ± Guard band multiplier * Expanded Measurement Uncertainty. 
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Guarded Rejection   
 

When assessing the conformity of a product or service to a specified requirement, it is crucial to have a 

high degree of confidence in the decision. 

This is especially true when the consequence of a false rejection (PFR) or false acceptance (PFA) is high. 

Guarded rejection is a decision rule that can reduce the risk of false rejection. 

A Guarded Rejection decision rule is often employed when one wants clear evidence that the limit has 

been exceeded. 

It is a way of setting the rejection criteria so that there is a high degree of confidence that a rejected 

product or service is out of tolerance. 

The rejection criteria are typically set wider than the tolerance to implement guarded rejection. 

This creates a "Guard Band" between the tolerance and rejection criteria. As a result, a product or 

service will only be rejected if it falls outside the Guard Band. 

The Guard Band would determine the appropriate risk level when rejecting or specifying non-

conformance. 

 

Figure 17 Image found in JCGM 106 Figure 11. (13) 

 

The width of the Guard Band is determined based on the uncertainty of the measurement and the 

desired level of confidence in the decision. 

JCGM 106:2012 section 8.3.3.1 states the following concerning guarded rejection, "An acceptance limit 

outside a tolerance interval, as shown in figure 11, can be chosen so as to increase the probability that 

a rejected item is truly non-conforming. Such a guarded rejection decision rule is often employed when 

one wants clear evidence that a limit has been exceeded prior to taking a negative action.” (14) 

Some examples of guarded rejection include: 

• Enforcing the Speed Limit where the officer wants to know without a doubt or, say, 99.9 % 

confidence that someone was speeding. 

• Finding the Blood Alcohol or other substances present is within an x % confidence to remove 

doubt. 

• Anti-Doping for Athletes (WADA) 
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• With DNA, if there is a 20 % chance that the DNA is not a match, is that enough of a chance to 

get a conviction? If we use guarded rejection, we can set the level to less than a 0.1 % chance, or 

even less. 

The formula to calculate the Z value for a probability of 95 % as 0.95 can be calculated using the Excel 

function which then would be used with the Excel NORM.S.INV(0.95). 

Guarded rejection can also be used in manufacturing, quality control, and environmental testing. 

It is a valuable tool for reducing the Risk of false rejection and ensuring that only products and services 

that are genuinely out of tolerance are rejected. 

However, it can significantly reduce the risk, especially when the uncertainty of the measurement is 

significant compared to the tolerance. 

Benefits of using guarded rejection 

• There are several benefits to using guarded rejection, including: 

• Reduced Risk of false rejection: Guarded rejection can significantly reduce the risk of false 

rejection, especially when the uncertainty of the measurement is significant compared to the 

tolerance. 

• Improved quality: By reducing the Risk of false rejection, guarded rejection can help to improve 

the overall quality of products and services. 

• Reduced costs: False rejection can lead to unnecessary costs, such as the expense of rework or 

scrap. By reducing the Risk of false rejection, guarded rejection can help to reduce these costs. 

• Improved customer satisfaction: False rejection can lead to dissatisfied customers. By reducing 

the Risk of false rejection, guarded rejection can help to improve customer satisfaction. 

How to implement guarded rejection 

To implement guarded rejection, the following steps should be taken: 

1. Perform a robust evaluation of the measurement uncertainty of the process. 

2. Select a desired level of confidence in the decision. 

3. Calculate the width of the Guard Band often using the probability and the 

NORM.S.INV(Probability) Excel function. 

4. Set the rejection criteria based on the probability needed. 

It is important to note that the Guard Band should be set wide enough to reduce the risk of false 

rejection to an acceptable level. 
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Guarded Rejection Example:  
 

JCGM 106:2012 Uses a Speed Limit enforcement example about issuing a ticket. 

In highway law enforcement, the speed of motorists is measured by police using devices such as radars 

and laser guns. 

A decision to issue a speeding ticket, which may lead to an appearance in court, must be made with a 

high degree of confidence that the speed limit has been exceeded. 

Using a particular Doppler radar, speed measurements in the field can be performed with a relative 

standard uncertainty u(v)=v of 2 % in the interval 50 km/h to 150 km/h. Knowledge of a measured 

speed v in this interval is assumed to be characterized by a normal PDF with expectation v and standard 

deviation 0.02v. 

 

Figure 18 Equation 1 from JCGM 106.  (15) 

JCGM 106 Example:  

This example differs from several others using the guarded rejection formula as the standard 

measurement uncertainty is of the indicated value. Thus, any solution will account for the standard 

uncertainty associated with the indicated value.  

𝑇𝑈 = 100𝘬𝘮⟋𝘩 

𝑢𝑚 = 2%𝑣𝑚𝑎𝑥 

𝑃𝑐 = 𝛷(𝑧) = 99.9 % 

𝑧 = 𝛷−1(0.999) = 3.09 

𝛷 -1 ( ) is the inverse standard normal distribution function. The Excel function is NORMSINV () 

99.9 % of the probability lies in the region 𝑣𝑚𝑎𝑥 ≥ 𝑇𝑈, therefore: 𝑧 =
𝑣𝑚𝑎𝑥−𝑇𝑈

𝑢𝑚
    

𝑧 =
𝑣𝑚𝑎𝑥 − 𝑇𝑈

0.02 ⋅ 𝑣𝑚𝑎𝑥
⇒ 0.02𝑧 = 1 −

𝑇𝑈

𝑣𝑚𝑎𝑥
⇒ 𝑣𝑚𝑎𝑥 =

𝑇𝑈

1 − 0.02𝑧
 

𝑣𝑚𝑎𝑥 =
𝑇𝑈

1 − 0.02𝑧
=

100

1 − 0.02 ⋅ 3.09
≈ 107𝘬𝘮⟋𝘩 (𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 106.5876095 𝘬𝘮⟋𝘩) 
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Figure 19 Excel Example of Guarded Rejection Courtesy of E=mc3 Solutions and Morehouse 

Instrument Company. 

Above are Excel formulas and the corresponding answers matching the JCGM 106:2012 value of 106.587 

(107 rounded) km/h for anyone wanting to implement Guarded Rejection. 

If one wanted to reverse solve the equation (i.e., verify the guarded rejection value does indeed back-

calculate to 99.9 %), we would have to solve for the standard uncertainty of Vmax = 106.587 609 5 by 

multiplying Vmax by 2 %. 

NORM.DIST(Vmax,Mean,Std Dev * Vmax,TRUE) 

NORM.DIST(106.587,100,(2 % *106.587 609 5),TRUE)=0.99900 =99.9 % 
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Global Risk  
 

Global Risk is mathematically based on the entire measurement result (for an infinite number of 

measurements). Global Risk depends on two probabilities to evaluate the overall probability of incorrect 

conformance decisions. 

Measurement uncertainty, 𝑢𝑚. 

Product/process a priori uncertainty, 𝑢𝑝. 

The risks now depend on the measurement process and the production process. 

When a production process consistently produces items well within their tolerance limits, the risk of 

making incorrect decisions typically decreases. 

 

Figure 20 Image Courtesy of Scott Mimbs. 

 

Global consumer risk refers to the probability that a test measurement on any product results in an 

incorrect pass determination, which means someone says something is good when it is not. 

This is also known as unconditional PFA or consumer risk. 

Global Risk also refers to the probability that a test measurement on any product results in an incorrect 

failure determination, which means someone says something is bad when it is good. 

This is also known as the unconditional PFR or producer risk. 

Global Risk considers the test measurement probability distribution and the probability of encountering 

a product at that measured value. 

It's important to note that Global Risk cannot be calculated without specifying a distribution of values 

for the product, which is obtained from a priori knowledge that changes with every new measurement 

made and the current measurements being made.  

Note: When dealing with Global Risk, if you currently have a desired EOPR, and a week later your 

EOPR changes to lower than your threshold value, you need to come back and look at the 
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measurements/calibrations performed during the past week. This means the Global Risk's EOPR 

reliability is fundamentally related to both the past and future. 

In simple terms, most people worry more about the probability that their equipment will not maintain 

the required tolerance during the calibration cycle since Global Risk relies on past measurement history 

at the time of calibration. 

This can be a significant issue when safety is crucial. 

One example might be the potential consequences if an aircraft's weight is miscalculated due to 

inaccurate measurements, causing the center of gravity to be off. 

When labs don't correctly calculate this Risk or loosen their restrictions/requirements, they create a 

potential danger wherever this equipment is utilized in subsequent processes. 

A good example would be not looking at the overall reliability of their equipment, which means not 

adjusting calibration/maintenance intervals or widening specifications to meet their reliability targets. 

Reliability/End of Period Reliability    
 

The Estimate of Reliability can be calculated using the formula below.    

 

Reliability is defined as the number of calibrations resulting in as-received IN – Tolerance Results divided 

by the total number of calibrations.   

Reliability Considerations may include:   

• Reliability decreases with time after calibration.  

• How much testing is required to demonstrate reliability with confidence? 

• A priori knowledge of the M&TE.    

Reliability decreases with time after calibration. 

Reliability Analysis of M&TE should be based on similar instrumentation, manufacturer, model #, and 

calibration intervals. What should be avoided is intermixing different M&TE with different calibration 

intervals, environments, and conditions (applications). 

The example above estimates the EOPR by simple division, which provides "a number" but disguises the 

confidence associated (it is not "the number”). For example, if a particular make/model instrument were 

calibrated 100 times with no "Out Of Tolerance" (OOT) noted, using simple math we discover the EOPR 

is 100%. This is a false statement. Although 100 out of 100 items were found "In-Tolerance", the true 

reliability is somewhere between two reliability confidence bounds. If the servicing lab has an EOPR 

target of 99% with 90% confidence and zero failures, the worst-case EOPR is assumed to be the lower 

calculated confidence bound. 
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As mentioned, an estimate of reliability can be calculated using binomial confidence bounds. What is a 

binomial confidence bound? It is the statistical equivalent of putting a "tolerance" around the target 

reliability. Just like a typical specification might be read as 1 VDC ±0.1 VDC at 95 % confidence. In this 

example, the Value of 1 VDC is bound by 0.9 to 1.1 VDC. If the measured value is +1.015 VDC, the 

measurement is considered "In-Tolerance." The true value, however, is unknown. It is unknown because 

of the measurement uncertainty involved. The true value lies within the measured value and the 

associated uncertainty. This is the case for any measurement situation as uncertainty is unavoidable. 

 

Figure 21 Confidence Bounds Image Courtesy of Greg Cenker & Indysoft. 

 

By using the Binomial as a tolerance bound concerning reliability, the similarity between 

acceptance/rejection criteria becomes obvious. Instead of the deviation from nominal, the question 

becomes "is the reliability in tolerance?" 

Let's revisit the initial example of 100 items calibrated with zero failures. It was stated the reliability 

target was 99 % with 90 % confidence around that estimate. We will substitute using the binomial 

confidence bound and borrow the A3 methodology from RP-1, Establishment, and Adjustment of 

Calibration Intervals (2010). The graph below shows the upper confidence bound (pU), reliability target 

(Rtarg), and the lower confidence bound (pL). The true reliability is between pU and pL. Since we don't 

know the true reliability, the lower confidence bound becomes the estimated EOPR. It is therefore 

assumed the worst-case EOPR becomes 97.72 % 
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Figure 22 Confidence Bounds Image Courtesy of Greg Cenker & Indysoft. 

 

The upper and lower binomial confidence bounds are easily calculated using Excel and the inverse beta 

function. 

BETA.INV = (Probability, Alpha, Beta, A, B) the values for A and B are left blank as they are optional and 

not applicable to this example. 

Using the sample size of 100 trials and 100 successes, with a desired confidence of 90 %, we write a 

function. 

*Note: in the event of zero failures, which is true in this example, the result will produce an error in 

excel displayed as #NUM! To avoid seeing this error, write the formula as described below. The 

IFERROR function translation reads "if there is an error, return the value of 1, otherwise calculate the 

formula." 

PU = IFERROR(1 – (BETA.INV ((1 – confidence) * 0.5, trials – successes, successes + 1)),1) 

     = IFERROR(1 – (BETA.INV ((1 – 90 %) * 0.5, 100 – 100, 100 + 1)),1) 

     = IFERROR(1 – BETA.INV ((1 – 90 %), 0, 101),1) * there is an error, therefore the result is 1 

PU = 100 % or 1 

Calculating the lower limit uses the same function but the input parameters are arranged differently. 

The error trapping, in this case, guards against the event of zero successes. 

PL = IFERROR(1 - (BETA.INV (confidence, trials - successes + 1, successes)),0) 

= IFERROR(1 - (BETA.INV (90 %, 100 - 100 + 1, 100)),0) *note the order of execution, 100 – 100 + 1 is 

the correct input while 100-(100+1) is incorrect and will produce an error 

     = IFERROR(1 – (BETA.INV (90 %, 1, 100)),0) 

     = IFERROR(1 – 0.02276)),0) 
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     =IFERROR(0.9772)),0) 

PL = 97.72 % or 0.9772 

In closing, we see our true reliability is between 100 and 97.72 %. We err on the side of caution by 

reporting the EOPR is therefore ~97.7 % 

In the manufacturing realm, this is known as the OC curve (Operator Characteristics) where a sample 

size is drawn determining acceptance/rejection of a product run.  

How much testing is required to demonstrate reliability with confidence? 

The formula used in determining the appropriate sample size for a given reliability target is very simple 

to replicate in Excel or virtually any calculator. The formula is as follows: 

Sample Size = ln(1-Confidence)/ln(Target Reliability)  

Reliability target = 95 % 

Confidence of the reliability target = 90 % 

Sample Size = ln(1-90 %)/ln(95 %) 

Sample Size = -2.302 585 093/-0.051 293 294 

Sample Size = 45 (rounded up from ~44.89)  

It is worth stating this number, consisting of 45 samples, is necessary to demonstrate 95 % EOPR with 90 

% confidence and assume zero failures. If the very next data point is a failure, the EOPR drops from 95 % 

to 91.8 % and would require 32 additional samples to bring the EOPR back to 95 %. Maintaining a high 

EOPR matched with an equally high level of confidence easily impacts the number of samples required 

to meet overly ambitious goals. 

The mathematics utilized to recalculate the revised sample size is not a closed-form solution. The value 

required is an iterative function, represented by a “Do Until" loop. For readers interested in this 

solution, it can be found in the appendix as a VBA function add-in. 

So, what would be a reasonable compromise? This question does not have a set, easy answer. The 

correct answer is it depends on the criticality of the measurement results and the risk penalty the 

company may be exposed to in the event of a false acceptance. If your company manufactures 

implantable cardioverter-defibrillators, the false accept risk level will likely be quite low, and therefore 

maintaining a high level of EOPR is not only desirable but mandatory. However, if the product is a paper 

notepad, an acceptable EOPR may be 85 % or less with a higher tolerance for false acceptance. The 

possibilities are nearly endless and therefore each laboratory must arrive at its own conclusion of 

acceptable EOPR and risk. 
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Calculating Global Risk  

A step-by-step guide on how to calculate Global Risk: 

1. Understand the Concept: One part of Global Risk is the probability that a test measurement on 

any product results in an incorrect pass determination. It's also known as the PFA or consumer 

risk. The other part is that an incorrect failure is reported (Probability of False Reject), also 

known as producer risk. 

2. Identify the Test Measurement Probability Distribution: This is the likelihood of different 

outcomes in a measurement. This distribution is a fundamental part of calculating Global Risk. 

3. Identify the Probability of Encountering a Product at That Measured Value: This is another 

crucial factor in calculating Global Risk. It's the likelihood of coming across a product with a 

specific measured value. 

4. Specify a Distribution of Values for the Product: Global Risk cannot be calculated without this. 

This distribution is obtained from prior knowledge and measurements of the product. 

5. Integrate the Joint PDF: This is the joint Probability Density Function of the test measurement 

and the PDF of the unit under test. This integration is a mathematical process that combines 

these two factors to calculate Global Risk. 

6. Make sure there is enough EOPR data to confidently use the Global Risk formulas. 

7. Apply the Formula: The formula for calculating global consumer and producer risk is found in 

JCGM 106 section 9.5.2.2: "For a measured value in the acceptance interval and a value of Y 

outside the tolerance interval, the global consumer's Risk is 

 

Figure 23 Formula for Global Risk found in JCGM 106. (16) 

 

Global Risk: For a measured value outside the acceptance interval and a value of Y within the tolerance 

interval, the global producer's Risk is: 

 

 

Figure 24 Formula for Global Risk found in JCGM 106. (17) 

 

Note: Please refer to JCGM 106 as there is a lot more than just this formula, as in a real-world scenario, 

the desired level of Risk will likely be chosen based on acceptance limits, cost analysis, and uncertainty. 
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8.  Interpret the Result: The resulting Value is the Global Risk, which represents the likelihood of 

incorrectly accepting a product based on the test measurement. 

 

Figure 25 JCGM 106 Figure 17 Global Risk versus Consumer Risk. (18) 

 

9. To reduce the probability of an incorrect, accept/reject decision, you might want to invest in 

better equipment to reduce the uncertainty. The above figure shows varying levels of 

measurement uncertainty and how Risk is lower with higher measurement capability index 

ratios (the Measurement Capability Index is analogous to TUR). 

Ensure you have the correct data and understand the process before calculating Global Risk. Much of 

this has to do with calculating TUR or Measurement Capability Index Correctly. 

Calculating Global Risk needs solving double-integral which doesn't have analytical solutions because of 

the exponential function. There are tools and software available to make calculating Global Risk easier.  

Some of the software is available for free, such as SunCal found at https://sandiapsl.github.io/. 

There are also many great reading references listed in our recommended reading section. 

Other software such as Mathcad can be used as well. Mathcad examples are included in the appendix. 

 

https://sandiapsl.github.io/
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Calculating TUR and Measurement Capability Index  
 

𝐓𝐔𝐑 =  
𝐒𝐩𝐚𝐧 𝐨𝐟 𝐭𝐡𝐞 ± 𝐔𝐔𝐓 𝐓𝐨𝐥𝐞𝐫𝐚𝐧𝐜𝐞

𝟐 𝐱 𝐤𝟗𝟓%(𝐄𝐱𝐩𝐚𝐧𝐝𝐞𝐝 𝐔𝐧𝐜𝐞𝐫𝐭𝐚𝐢𝐧𝐭𝐲 𝐨𝐟 𝐭𝐡𝐞 𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭 𝐏𝐫𝐨𝐜𝐞𝐬𝐬)
 

 
TUR is a ratio of the tolerance of the item being calibrated divided by the uncertainty of the entire 

calibration process. Evaluation of the TUR is a rigorous process that includes additional contributors to 

the uncertainty beyond just the uncertainty of the calibration standard. ANSI/NCSLI Z540.3 and the 

Handbook published in 2006 have the complete definition of TUR. It relies on knowing how to calculate 

uncertainty following a calibration hierarchy, including metrological traceability. There is a lot of 

confusion in the industry on how to calculate Test Uncertainty Ratio 

Rightfully so, the definition has taken different shapes and forms over the decades. Sometimes, it is 
even confused with the Test Accuracy Ratio (TAR). 

 
 

𝐓𝐀𝐑 =  
𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 𝐨𝐟 𝐭𝐡𝐞 𝐔𝐧𝐢𝐭 𝐔𝐧𝐝𝐞𝐫 𝐓𝐞𝐬𝐭 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 𝐨𝐟 𝐭𝐡𝐞 𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝
 

 
TAR is a ratio comparing the Unit Under Test's Accuracy with the Reference Standard's Accuracy. The 
origins of which date back to the 1950's. 
 
The roots of measurement decision risk can be traced back to early work done by Alan Eagle, Frank 

Grubbs, and Helen Coon, which include papers published around 1950. These measurement decision 

risks concepts were complex for many and did not gain much traction. 

About five years later, Jerry Hayes of the United States Navy established accuracy ratios versus decision 

risks for the calibration program. TAR was introduced because it simplified much of the measurement 

decision risk. First, a consumer risk of 1 % was accepted, which would be a Probability of False Accept 

(PFA) today. This means that about a 3:1 accuracy ratio would be required.  

Then, working with Stan Crandon, Hayes decided to add this ratio to account for some uncertainty in the 

reliability of tolerances. Thus, 3:1 became 4:1, and the US Navy adopted a policy many in the 

metrological community adopted. More details about this history are found in "Measurement Decision 

Risk – The Importance of Definitions" by Scott Mimbs. (19) 

Since there was limited computing power, the 4:1 TAR ratio was an easy-to-follow rule that solved a 

problem. The TAR is a ratio of the tolerance of the item being calibrated divided by the accuracy of the 

calibration standard. Thus, if I have a device that needs to be accurate to 1 %, I need a calibration 

standard that is four times better or 0.25 %. Since the concept was so simple, many followed it and 

continued to follow it. Initially, TAR was supposed to be a placeholder until more computing power 

became available to the masses.  
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𝐓𝐔𝐑 =  
𝐒𝐩𝐚𝐧 𝐨𝐟 𝐭𝐡𝐞 ± 𝐓𝐨𝐥𝐞𝐫𝐚𝐧𝐜𝐞

𝟐 𝐱 𝐤𝟗𝟓% √(
𝐂𝐌𝐂
𝐤𝐂𝐌𝐂

)
𝟐

+  (
𝐑𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐔𝐔𝐓

√𝟏𝟐
)

𝟐

+ (
𝐑𝐞𝐩𝐞𝐚𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲𝐔𝐔𝐓

𝟏 )
𝟐

+ ⋯ (𝐮𝑶𝒕𝒉𝒆𝒓)𝟐

 

 
The TUR formula is an adaptation with the denominator clarified for current practices from Handbook 
for the Application of ANSI/NCSLI ANSI 540.3 -2006. Some may contend that resolution is accounted for 
with repeatability studies. However, if repeatability is equal to zero, then the UUT's resolution must be 
considered. 
 
In most cases, the numerator is the UUT Accuracy Tolerance. The denominator is slightly more 
complicated. Per the ANSI/NCSL Z540.3 Handbook, "For the denominator, the 95 % expanded 
uncertainty of the measurement process used for calibration following the calibration procedure is to be 
used to calculate TUR. The value of this uncertainty estimate should reflect the results that are 
reasonably expected from using the approved procedure to calibrate the M&TE. Therefore, the estimate 
includes all components of error that influence the calibration measurement results, including the 
influences of the item being calibrated except for the bias of the M&TE. The calibration process error, 
therefore, includes temporary and non-correctable influences incurred during the calibration such as 
repeatability, resolution, error in the measurement source, operator error, error in correction factors, 
environmental influences, etc." (20) 
 
This definition of the TUR denominator aligns very closely with ILAC P14:09/2020, which states, 
"Contributions to the uncertainty stated on the calibration certificate shall include relevant short-term 
contributions during calibration and contributions that can reasonably be attributed to the customer's 
device. Where applicable, the uncertainty shall cover the same contributions to uncertainty that were 
included in evaluation of the CMC uncertainty component, except that uncertainty components 
evaluated for the best existing device shall be replaced with those of the customer's device. Therefore, 
reported uncertainties tend to be larger than the uncertainty covered by the CMC." (21) 
 

An Alternative Formula (ANSI Z540.3 Method 6 aka Mike Dobbert 

Method) that Controls PFA to Less than 2 %.   
 

In late 2006, ANSI/NCSL Z540.3 added a Global consumer risk requirement of 2 % or less for calibrations 

requiring a conformance decision.   

– Many calibration labs did not have the reliability data (EOPR) needed for Global Risk 

models. 

In response, Michael Dobbert developed a Managed Risk Guard Band that does not require EOPR.   

Paul Reese and John Harben wrote a paper Risk Mitigation Strategies for Compliance Testing that 

proved for the worst case EOPR, if the TUR was 4.6:1 or greater the false accept risk would always be 

below 2 %.  
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Figure 26: Max Risk Vs TUR from Implementing Strategies for Risk Mitigation. (22) 

 

The Managed Risk Guard Band is based on the fact that for a given measurement capability index (Cm) 

there is a maximum consumer risk for all product/process uncertainty values.  

 

Figure 27: Max Risk vs EOPR from Implementing Strategies for Risk Mitigation. (23) 

 

Therefore, for a given measurement capability index Cm, it is possible to apply just enough of a Guard 

Band to lower the maximum risk below a desired level. 
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Thus, Dobbert calculated a multiplier that adjusts the Guard Band for a specified measurement 

capability index Cm to meet the 2% consumer risk requirement of Z540.3. 

This method ensures that the consumer risk is in control while minimizing the producer risk. 

Applying a guard-band to manage maximum false-accept risk results in a guard-band that is always less 

than the 95% expanded uncertainty. Accordingly, the acceptance limits can be expressed as follows,  

A = T −U95 % × M 

Where:   

A = acceptance limit  

T = tolerance limit  

U95 % = calibration process 95% expanded uncertainty  

M = multiplier: the fraction of the 95% expanded uncertainty for which the acceptance limits provide 

the desired false-accept risk. 

M2 % = 1.04 – e((0.38 ln(Cm) – 0.54) 

 

Figure 28: Image Courtesy of Scott Mimbs. 
 

The graph above illustrates the size of the Managed Risk Guard Band multiplier over a range of 

measurement capability indices (Cm). 

A = T −U95 % × M 
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Cm = Measurement Capability Index (TUR) 
 
M = 1.04-EXP(0.38 x ln(Cm)-0.54)   

 

T = Required Tolerance  

 

𝐓𝐔𝐑(𝐂𝐦)  =  
𝐒𝐩𝐚𝐧 𝐨𝐟 𝐭𝐡𝐞 ± 𝐓𝐨𝐥𝐞𝐫𝐚𝐧𝐜𝐞

𝟐 𝐱 𝐤𝟗𝟓%  (√(
𝐂𝐌𝐂
𝐤𝐂𝐌𝐂

)
𝟐

+ (
𝐑𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐔𝐔𝐓

√𝟏𝟐
)

𝟐

+  (
𝐑𝐞𝐩𝐞𝐚𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲𝐔𝐔𝐓

𝟏 )
𝟐

+ ⋯ (𝐮𝑶𝒕𝒉𝒆𝒓)𝟐)

 

Note: The formula is here to show that this decision rule does not apply to a single-sided tolerance. 

It is mathematically described as: 

 

Method 6 Example: 

M𝟐% = 1.04 − 𝑒𝑥𝑝(0.38 × 𝑙𝑛 (𝑇𝑈𝑅) − 0.54) 

+𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 = 𝑈𝑝𝑝𝑒𝑟 𝑇𝑒𝑠𝑡 𝐿𝑖𝑚𝑖𝑡 − 𝑈𝑐95 % × 𝑀2% 

−𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 = 𝐿𝑜𝑤𝑒𝑟 𝑇𝑒𝑠𝑡 𝐿𝑖𝑚𝑖𝑡 + 𝑈𝑐95 % × 𝑀2% 

Test Limit (TL)= ±1 

Expanded Measurement Uncertainty (Uc95 %) = ±0.5 

TUR = 1/ 0.5 = 2.0 

M2% =0.281 645 308  

+Acceptance Limit = Upper TL + 𝑈𝑐95 % × 𝑀2%= 0.859 177 346 

-Acceptance Limit = Lower TL -  𝑈𝑐95 % × 𝑀2%= -0.859 177 346 

The 𝑀 2% expression was empirically fit to achieve a worst-case PFA of 2 %. This is a very easily 

implemented option. 

Method 1 Unconditional PFA Estimation – Test Point Population Data.   
 

Method 1, which has the most flexibility, is the most complex method to implement in a metrology 

laboratory system. The functions are given in the appendix of this document, which makes them truly 

copy & paste. The difficulty arises in understanding their proper use.  

Method 1 provides an unconditional PFA estimate that is applied to a population of “like calibration 

processes” at the test point level. What this means is that the population or average PFA is estimated 

for each test point of the same M&TE model and manufacturer and evaluated for compliance, prior to a 

measurement. The estimated PFA is compared with the requirement to determine whether the test 
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point is compliant. This unconditional PFA estimation approach can also be used to develop test point 

level guard bands. This method allows for a direct determination of compliance to a global risk 

requirement that is a value other than 2 % - hard coded in the Managed Guard Bands. Method 1 is in 

this appendix but, for flexibility, corresponds to PFA, PFR, uUUT, and PFAGBMult as the core functions 

for the estimation of the Guard Band calculations in this guidance. 

This section discusses the meaning of numerical search methods and provides an algorithm appropriate 

for determining acceptance limits. 

In general, numerical search methods are used to provide solutions to complex mathematical 

expressions that cannot be solved in closed form. Often, these search methods are based on derivatives 

of the formulas used in the expressions. This is the case with iterative methods such as the “Newton” 

method generally included in calculus texts. The Newton Method is utilized in Method 1 for 

asymmetrical tolerance calculations. 

Numerical bisection provides a numerical search method that does not require derivatives. This 

algorithm is simple to understand and implement. As such, this algorithm is very appropriate as a 

numerical search method for determining guard bands and acceptance limits. 

As applied to acceptance limits, numerical bisection starts by setting the acceptance limit equal to the 

tolerance limit and estimating PFA using one of the estimation methods provided in Method 1. If the 

estimated PFA is greater than the requirement, the acceptance limit is lowered until the estimated PFA 

is less than or equal to the requirement. 

At this point, the algorithm tries to find an acceptance limit closer to the tolerance limit. When the 

estimated PFA is lower than the requirement, an acceptance limit is increased using a bisection between 

the current acceptance limit and the tolerance limit. When the estimated PFA is greater than the 

requirement, an acceptance limit is decreased using bisection between the current acceptance limit and 

the previously tried acceptance limit. 

This bisection process continues until the estimated PFA is found to be between the PFA requirement 

and the PFA requirement minus some small precision factor (0.000 000 001). 

Although Method 1 is complicated, we can demonstrate how it can be configured to provide the same 

results as the Managed Guard Band Method. Using the same, basic inputs demonstrated in the 

Managed Guard Band Method, we will add 2 variables, the estimated End of Period Reliability for the 

UUT (designated in the function is “R”), and the maximum level of risk required (designated as “Req”). 

Since we know nothing about our UUT, we will assume an EOPR value of 68.27 %. 

 

For reference, by reverse solving for EOPR using the Managed Guard Band method, this EOPR value 

reverse calculated to 69.674 % but we will use 68.27 % (1-sigma) keeping things simple. 

Test Limit (TL) = ±1 

R (UUT’s assumed End of Period Reliability since we know nothing about it) = 68.27 % 

Expanded Measurement Uncertainty (Uc95 %) = ±0.5 

TUR = 1/ 0.5 = 2.0 
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Function uutUnc(68.27 %, Uc95 % / 2, Lower TL, Upper TL) 

=uutUnc(68.27 %, 0.25, -1, 1) = ~ 1 

Function PFAGBMult(Req, uutUnc(68.27 %, 0.25, -1, 1), Uc95 % / 2, Lower TL, Upper TL) 

= PFAGBMult(2 %, 1, 0.25, -1, 1) 

= 86.834 % 

+A = Upper TL x 86.834 % = 0.86834 

-A = Lower TL x 86.834 % = -0.86834 

Verify newly calculated tolerances limit the PFA to 2 % 

PFA = (uUUT, Uc95 % /2, Lower TL, Upper TL, Lower AL, Upper AL) 

PFA = (1, 0.25, -1, 1, -0.86834, 0.86834) 

PFA = 2.000 % 

By substituting the Managed Guard Band results into the PFA equation, we can see they agree within 

reason. 

PFA = (1, 0.25, -1, 1, -0.859177346, 0.859177346) 

PFA = 1.890 % 

*Note, the slight difference in PFA between both methods is due to the Managed Guard Band 

methodology utilizing a curve fit to ensure all EOPRs with all TUR combinations, yielding a PFA of <2 %. 

To the end user, you will not know what the “actual” PFA is because the results simply limit the PFA to a 

value <2 %. Using Method 1 is a direct calculation specific to the individual test point. Method 1 offers 

much more flexibility because it allows for the entry of true EOPR estimates for both the UUT and the 

reference standard, at the test point level, to be added if this information is available. 
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Decision Rule Tree  
 

Below is a modified version of the Decision Rule Selection Guide in ILAC G8. The modification was done 

to ensure there is enough historical data to use different Global Risk decision rules that rely on End of 

Period Reliability. (Not all methods mentioned in the flow chart are discussed in this paper) 

 

Figure 29: This is a modified version of the ILAC G8:09/2019 table. 

  

The reason we modified the ILAC G8 table is that we believe that the ILAC G8 table does not fully 

elaborate on the additional requirements to use some Global Risk methods that require EOPR analysis. 
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Beyond the Sticker Price: Costing Formulas That Save Big on Equipment 
 

Being cost-efficient while providing the highest manufacturing yield is not mutually exclusive. Both are 

within reach if the process is properly vetted while still in the planning stages. We will take a 

hypothetical look at the potential rejection/scrap rate of manufacturing a simple resistor. This resistor 

isn't particularly interesting and has rather unimpressive specifications: 

Nominal value = 1500 Ω 

Specification = ±0.2 Ω (±0.0133 %) 

Expected in-tolerance probability (itp) = ~90 % (assumes roughly 10% will fail) 

Expected process uncertainty = ±0.12 Ω 

Measurement Capability, Cm (a.k.a TUR) = 2.5 (±0.04 Ω measurement uncertainty) 

The manufacturer has a high-speed Digital Multi Meter (DMM) previously purchased, and the decision 

was made to utilize this instrument in lieu of making a new purchase. The monthly yield is expected to 

be about 100,000 pieces. Instead of purchasing new equipment, the manufacturer decided to reduce 

the acceptance criteria specifications from ±0.2 to ±0.18 utilizing a Guard Band to keep the Probability 

of False Accept (PFA) to 1 % or less as seen by the consumer. Without reducing the acceptance 

specifications, to ±0.18, the consumer would likely see ~10 % field failures. Sounds good so far, what 

could go wrong?  

The cost to manufacture and test each one of these resistors is $13.50, while the cost to retest prior to 

scrapping is $35. Before going further, the reader may wonder why the cost of retesting the failed 

production item cost is significantly more.  

The cost escalation stems from various factors: the time required to remove the faulty item from the 

production line, completing the retest tag, transporting it to the upper-level laboratory, the technician's 

time and salary for conducting additional measurements, determining the final disposition of the item 

(whether it truly passed or failed), and the decision to either return it to production or scrap it. 

This is where Global Risk calculations truly shine, shedding light on the production process, and 

justifying the purchase of higher-quality processes and/or instrumentation. Taking what we know, 

stated from above (specs, tolerances, and cost), the failure/scrap rate can be accurately predicted. If the 

manufacturer continues with the plan to build these resistors, as-is, with a total process uncertainty of 

±0.12 Ω, the metrics will likely be: 
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Figure 30 PFA & PFR Matrix Courtesy of Greg Cenker & Indysoft. 

 

So, how does this translate into lost profit? From the chart above, we see the following: 

Resistors Produced =  100,000 Correctly Accepted =  83,604 
Cost per item =  $13.50 Falsely Accepted =  1,000 
Cost to retest =  $35.00 Total Accepted =  84,604 

(1) Initial Build + Testing Production Cost (100,000 x 13.5) = $1,350,000 
Falsely Rejected =  6,838   

Correctly Rejected =  8,558   
Total Rejections =  15,396 (2) Cost due to False & True Rejections =  $207,846.48 

    
The number of true rejections and false rejections are all-inclusive. Therefore, all rejections are 

scrutinized by retesting all of them at a secondary inspection station. 

  (3) Cost to retest (15,396 x 35) =  $538,876.81 
  False reject + retest cost (additional cost) =  $746,729.29 

Total cost for (1) + (2) + (3) =  $2,096,723 
*Making matters worse, retesting found 8,857 (55.58%) that initially failed, passed secondary inspection costing 
~$310,000 needlessly. 
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A very large part of this equation is the reduced Cm of 2.5. Although the actual build process of the 

resistor alone may contribute significantly to the rework cost (itp ~90 %), how could selecting better test 

equipment help identify true problems? As stated, the ipt was expected to be ~90 % but this number 

may be completely underreported due to poor instrumentation. The graph below illustrates our 

baseline assumptions. 

 

Figure 31: Consumer Risk vs Producer Risk Courtesy of Greg Cenker & Indysoft. 
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Figure 32: Example Showing the High Cost of False Rejection Courtesy of Greg Cenker & Indysoft. 

 

 

Figure 33: Production Cost vs Cm vs Yield at 99 % Confidence Courtesy of Greg Cenker & Indysoft. 

Available DMM choices Low Buck Acme Standard Acme Bronze Acme Silver Acme Gold

Estimated Acquisition Cost $4,405.00 $6,000.00 $13,481.00 $14,315.00 $19,429.00

Measurement Uncertainty (1-sigma) 0.06939 0.04000 0.01038 0.00711 0.00677

UUT Specification 0.2 0.2 0.2 0.2 0.2

Cm 1.44 2.5 9.63 14.06 14.78

Falsely Accepted 1,000 1,000 970 671 639

Falsely Rejected 23,970 9,611 65 31 28

Production Cost $1,350,000.00 $1,350,000.00 $1,350,000.00 $1,350,000.00 $1,350,000.00

Cost due to false rejection $323,598.52 $129,751.63 $879.36 $412.60 $373.69

Cost to retest $838,959.14 $336,393.12 $2,279.82 $1,069.71 $968.84

Production, False Rej. & Retesting => $2,512,557.66 $1,816,144.75 $1,353,159.18 $1,351,482.31 $1,351,342.53

Increased cost as % of budgeted 86.12% 34.53% 0.23% 0.11% 0.10%

Likely Yield, 99% confidence 76.03% 90.39% 99.94% 99.97% 99.97%

Likely Product Rejection Rate 23.97% 9.61% 0.07% 0.03% 0.03%

CM = 2.5, Cost = $1,816,144.75

CM = 9.63, Cost = $1,353,159.18

CM = 2.5, Yield = 90.39%

CM = 9.63, Yield = 99.94%

CM = 2.5, Budget = +34.53%

CM = 9.63, Budget = +0.23%
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The higher the Cm (9.63), the higher the expected yield (99.91 %), with minimum capital going over the 

base budget (+0.23 %). Going the other way, the lower the Cm (2.5), the lower the expected yield (90.1 

%), and the increase over the base budget (+35.53 %). 

There is more going on than simply changing out DMMs. Perhaps there is a throughput (speed) issue or 

concerns about the overall maintenance of a higher echelon reference DMM. What this does 

demonstrate is that by taking the uncertainty of the reference equipment into account before the 

decision is made to put some test system into operation, virtually all new sources of error will likely be 

due to the UUT itself. Taking the reference system uncertainty into account firstly, will likely save 

hundreds of thousands of dollars once the decision to produce is greenlighted. 

These calculations are based on the manufacturer’s specifications and do not take EOPR into account. 

Note: See Production Yield Example on Calculating Cost Associated with PFA and PFR in Appendix 
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Additional Information on Measurement Uncertainty  
 

The JCGM 200 (VIM) in section 2.26 defines measurement uncertainty as a non-negative parameter 

characterizing the dispersion of the quantity values attributed to a measurand based on the information 

used. (24) 

Measurement uncertainty simplified is the value assigned to "doubt" about the validity of an assigned 

calibration value.     

Documented measurement uncertainties are required on a calibration certificate to support 

metrological traceability. Uncertainty is more than any accuracy statement. Several contributors to the 

measurement process are included in the evaluation of Measurement uncertainty. Of these 

contributors, uncertainty is often broken down into two types: Type A and Type B evaluations.  

Type A is derived from statistical data or uncertainty evaluation by the statistical analysis of a series of 

observations. Type B is an evaluation of uncertainty by means other than the statistical analysis of a 

series of observations. Examples of both types are below.  

Type A Uncertainty Contributions 

The GUM states that all data analyzed statistically is treated as a Type A contribution with a normal 

statistical distribution. Typical examples are: 

• Repeatability (required by the GUM, and Accreditation bodies) 

• Reproducibility 

• Stability / Drift  

• Others (These would include ASTM E74 Lower Limit Factor (LLF), non-linearity, hysteresis, or 

SEB for commercial calibrations) 

Note: Stability can be treated as Type B if values are taken over a range using previous measurement 

data. Stability data may be treated as Type A if an evaluation is made using statistical methods over 

several calibration data sets (i.e. Control Charts). 

Type B Uncertainty Contributions 

Per section 4.3 of the JCGM 100 (GUM)(25), Type B evaluation of standard uncertainty may include: 

• Previous measurement data 

• Experience with or general knowledge of the behavior and properties of relevant materials 

and instruments 

• Manufacturer's specifications 

• Data provided in calibration and other certificates 

• Uncertainties assigned to reference data taken from handbooks 

• Bias (systemic error) if not corrected* 
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Additional Type B considerations are provided below. 

• Resolution of the reference standard 

• Resolution of the best existing force-measuring instrument or the force-measuring 

instrument used for repeatability studies 

• Reference standard uncertainty 

• Reference standard stability 

• Environmental factors 

• Other error sources 

*Note on bias: The GUM requires that corrections be applied for all recognized and significant 

systematic effects and potential errors. Where a correction is applied based on a bias, an estimate of the 

associated Uncertainty must then be included in the uncertainty analysis. If corrections are not applied, 

bias must be added to the expanded uncertainty (U + bias). 

Note: A full Measurement Uncertainty Budget is required to be completed for any decision rule. The 

budget is often represented by the nomenclature CMC (Calibration and Measurement Capability).  

Failure to include all significant sources of measurement uncertainty can result in an incorrect 

conformity decision.  

Additional Guidance on Measurement Uncertainty Recommendations. 

In our recommended reading we have referenced the book Introduction to Statistics in Metrology, 1st 

Edition. This is a fantastic read for those wanting help with creating and understanding measurement 

uncertainty budgets.   

Morehouse has created many documents for help with force uncertainty budgets that can be found 

here.  

There is a great book to help with common measurement uncertainty problems and solutions titled 

Practical Numerical Methods for Chemical Engineers Using Excel with VBA, 5th Edition. 

JCGM 106:2012 Evaluation of measurement data – The role of measurement uncertainty in conformity 

assessment. 

 

 

  

https://mhforce.com/documentation-tools/?_sft_support-item-tag=guidance-document
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How to Specify Requirements on Purchase Orders 
 

The first thing the customer of Measurement Services should do is evaluate the supplier’s capability. 

This may be conducted by reviewing the supplier’s ISO/IEC 17025 (or equivalent, e.g. ISO/IEC 17034) 

Scope of Accreditation (SoA).  

The Checklist: 

• ISO/IEC 17025 accredited (ISO/IEC 17034 if purchasing Reference Materials)? 

• Supplier evaluation (ISO/IEC 17025 Clause 6.6) 

• Metrological Traceability (ISO/IEC 17025 Clause 6.5) 

• Uncertainties sufficient for the intended use (ISO/IEC 17025 Clause 7.6)? 

• Measurement Uncertainty is less than the requirements (specifications) per ILAC P14:09/2020. 

• If a conformity decision is required, can they implement appropriate decision rule suitable to 

your risk appetite (ILAC G8:09/2019)? 

• Contract Review (ISO/IEC 17025 Clause 7.1). 

• Communicating requirements to the calibration supplier: 

✓ ISO/IEC 17025 (or equivalent) accredited calibration is required. 

✓ Actual Measurement uncertainty per data point, range specified per ILAC P14 

requirements. 

✓ Conformity decision with the decision rule specified (or decision rule utilized by the 

supplier is appropriate for use). - See example language in this section. 

• Review of received product and services ((ISO/IEC 17025 Clause 6.6.2) 

✓ Utilize tools provided in this document to verify conformance requirements to ensure 

the risk criteria is satisfied.  

 

Many of us have observed a variety of purchase orders with very vague instructions. One of the favorites 

for most is the language please calibrate.   

There’s also “Calibrate to Manufacture’s Specifications” or a vague request to ensure a 4:1 TAR or 4:1 

TUR has been met and to only report measurement uncertainty if the condition cannot be met.  

Many of these give very little guidance for the laboratory performing the calibration to make a 

conformity decision of “pass “or “fail” without further instruction.  

Many requests do not specifically deal with the acceptable level of risk required to make the binary 

conformity decision of pass or fail.  

The best conformity guidance is the one that comes directly from the end-user of the equipment and 

clearly states when to “Pass” or “Fail” the calibration.  

When someone wants to limit their measurement risk, they can choose to specify acceptance criteria. 

These criteria can use either a simpler method of acceptance or a guard band.  
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An example of a rule based on Simple Acceptance with a limit on expanded uncertainty would assume 

the end-user has calculated the appropriate maximum risk.   

The language for Simple Acceptance might look something like this: 

Please calibrate “As Found” Manufacturer 10,000 N Load cell S/N XXXX with indicator Manufacturer 

Readout XXXX to 10,000 N in Compression only and issue a “Pass” when the measured value is within 

± 10 N of the force applied and the expanded uncertainty U 95 % ≤ 2 N, otherwise “Fail” and adjust to 

within ± 10N and issue an “As Left” report after adjustment.  

There are several examples of how one can specify a guard band to ensure that the risk is limited. For 

this example, we will assume one wants their PFA to be less than 2 % and they want a binary conformity 

assessment.  

Please calibrate “As Found” Manufacturer 10,000 N Load cell S/N XXXX with indicator Manufacturer 

Readout XXXX to 10,000 N in Compression only and issue a “Pass” when the PFA using Specific Risk is 

≤ 2 %, Otherwise Fail.   

The same example with a multi-state decision rule.   

Please calibrate “As Found” Manufacturer 10,000 N Load cell S/N XXXX with indicator Manufacturer 

Readout XXXX to 10,000 N in Compression only and issue a “Pass” when the PFA using Specific Risk is 

≤ 2 %, “Fail” when PFA > 50 %, otherwise issue a “Possible Pass.”  

Example of Simple Acceptance with TUR (Cm)  

PASS when the measured value is between the Tolerance Limits and TUR greater than 4:1 or Cm 

greater than 1.67, otherwise Fail. 

 

Decision Rule Selection Examples for Suppliers of Measurement Services   
 

A supplier of Measurement Services may provide different options for a customer to select. The 

following is provided as an example: 

For the LABORATORY (quotation, reporting, and Web Site):  

ISO/IEC 17025:2017, Clause 7.8.6 requires that when statements of conformance (PASS/FAIL, GO/NO 

GO) to a specification or a standard are made, the LABORATORY is required to take the measurement 

uncertainty into account when making PASS/FAIL decisions on a calibration. This may mean that a 

measurement point on a calibration that may PASS with OPTION 1 may fail with OPTIONS 2 and 3 

depending on the customer requirements (specifications).  

If a conformance (PASS/FAIL) decision on a calibration is required, the customer shall provide the 

associated specifications for the measurement (The customer may specify the manufacturer’s 

specifications).  
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By default, LABORATORY shall utilize OPTION (3 or 4) in reporting measurement results on the ISO/IEC 

17025 accredited calibration and test reports. 

OPTION 1: PASS/FAIL compliance decision against the specification without taking the uncertainty into 

account (traditional approach-SIMPLE ACCEPTANCE) with other criteria such as acceptable TUR or 

Capability Index.  

OPTION 2: PASS/FAIL compliance decision taking the uncertainty into account (conservative, tighter 

guard band approach deducting the measurement uncertainty from the upper and lower specification-

ILAC G8:2009 Rule). 

OPTION 3: PASS/FAIL compliance decision taking the measurement uncertainty into account using the 

ANSI/NCSL Z540.3 Handbook Method 6 with a Probability of False Accept (PFA) of less than 2%. (A more 

aggressive approach with a defined risk) 

OPTION 4: Measurement Result and associated Measurement Uncertainty (Customer makes an 

evaluation of the suitability of Measurement data or when no specification is provided).  

 

Language for the certificate: 

Only the measurement result and its associated uncertainty are stated in the report (OPTION 4).  

A statement of Conformance is based on the customer option chosen. By default, LABORATORY does 

not make any claims on the conformance as it cannot ascertain every individual customer’s requirement 

unless expressly specified in the customer requisition. When a specification (requirement) is provided by 

the customer, OPTION 3 is used by default to make a statement of conformance unless otherwise 

stated. Please refer to the LABORATORY website (http://Laboratoryxxxxxx.com/) for further explanation 

on statements of compliance to OPTIONS 1 to 4.  

Conclusion 
 

This document serves as a comprehensive guide to decision rules and measurement risk, covering 

foundational requirements and calculations for implementing decision rules in the context of 

measurement uncertainty. It addresses the three critical pillars of measurement – uncertainty, 

metrological traceability, and decision rules – ensuring confidence in results. It explores Specific Risk, 

Global Risk, and guarded rejection and emphasizes adherence to standards for effective decision-

making. By enabling informed decisions, this document helps in the development of safer products and 

services, reduces risks for consumers and suppliers, and elevates the quality of measuring equipment 

and services. 

Despite challenges in existing materials tailored for those with advanced statistical backgrounds, we aim 

to present a document that encapsulates collective efforts, making it accessible to a broader audience. 

Implementing the outlined robust measurement decision risk program is anticipated to yield substantial 

savings for organizations in reputation and tangible costs. 
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Recommended Reading 
 

We have reviewed numerous published documents on decision rules, and while this list highlights 

valuable resources, it's important to acknowledge the existence of potentially countless other relevant 

documents that we may have missed. 

Guidance: 

• ILAC G8:09/2019 Guidelines on Decision Rules and Statements of Conformity 
• JCGM 106:2012 Evaluation of measurement data – The role of measurement uncertainty 

in conformity assessment 
• UKAS LAB 48: Decision Rules and Statements of Conformity 
• https://www.eurolab.org/pubs-cookbooks “Cook Book” – Doc No. 8 
• ISO/IEC 17025 2017 General requirements for the competence of testing and calibration 

laboratories 
• Handbook for the Application of ANSI Z540.3-2006: Requirements for the Calibration of 

Measuring and Test Equipment 
• ASQ Metrology Handbook, 3rd Edition Chapter 30 
• NCSLI-RP18 Estimation and Evaluation of Measurement Decision Risk 
• ASME B89.7.3.1-2001 Guidelines for Decision Rules: Considering Measurement 

Uncertainty in Determining Conformance to Specifications 
• ASME B89.7.4.1-2005 Measurement Uncertainty and Conformance Testing: Risk Analysis * 
• ISO 14253-5 Part 1: Decision rules for proving conformity or nonconformity with 

specifications. 
• Introduction to Statistics in Metrology 1st ed.  
• WADA Technical Document – TD2017DK 

 

Papers: 

• Evaluation of Guard Banding Methods for Calibration and Product Acceptance – Colin J. 
Delker 

• A STUDY OF AND RECOMMENDATIONS FOR APPLYING THE FALSE ACCEPTANCE RISK 
SPECIFICATION OF Z540.3 – D. Deaver J. Sompri 

• Guard-banding Methods-An Overview – S. Rishi 
• A Guard-Band Strategy for Managing False-Accept Risk- M. Dobbert 
• Risk Mitigation Strategies for Compliance Testing – J. Harben & P. Reese 
• Measurement Decision Risk – The Importance of Definitions – S. Mimbs 
• Understanding Measurement Risk – M. Dobbert 
• Conformance Testing: Measurement Decision Rules – S. Mimbs 
• Using Reliability to Meet Z540.3’s 2 % Rule – S. Mimbs 
• Analytical Metrology SPC Methods for ATE Implementation – H. Castrup 
• The Force of Decision Rules: Applying Specific and Global Risk to Star Wars – H. Zumbrun 

& G. Cenker 
• Unraveling the Tom Brady Deflate Gate – G. Cenker, & H. Zumbrun 
• Calibration in Regulated Industries: Federal Agency use of ANSI Z540.3 and ISO 17025 – P. 

Reese 
 

https://ilac.org/publications-and-resources/ilac-guidance-series/
https://ilac.org/publications-and-resources/ilac-guidance-series/
https://www.bipm.org/documents/20126/2071204/JCGM_106_2012_E.pdf/fe9537d2-e7d7-e146-5abb-2649c3450b25
https://www.bipm.org/documents/20126/2071204/JCGM_106_2012_E.pdf/fe9537d2-e7d7-e146-5abb-2649c3450b25
https://www.bipm.org/documents/20126/2071204/JCGM_106_2012_E.pdf/fe9537d2-e7d7-e146-5abb-2649c3450b25
https://www.ukas.com/wp-content/uploads/schedule_uploads/759162/LAB-48-Decision-Rules-and-Statements-of-Conformity.pdf
https://www.ukas.com/wp-content/uploads/schedule_uploads/759162/LAB-48-Decision-Rules-and-Statements-of-Conformity.pdf
https://www.eurolab.org/pubs-cookbooks
https://www.osti.gov/servlets/purl/1855029
https://xdevs.com/doc/Fluke/5700a/9010387_ENG_A_W.PDF
https://xdevs.com/doc/Fluke/5700a/9010387_ENG_A_W.PDF
https://www.yumpu.com/en/document/view/35312498/guard-banding-methods-an-overview-metrology-society-of-india
https://www.keysight.com/us/en/assets/7018-03682/white-papers/5991-1267.pdf
https://www.tandfonline.com/doi/abs/10.1080/19315775.2012.11721585
https://ntrs.nasa.gov/api/citations/20130012508/downloads/20130012508.pdf
https://xdevs.com/doc/HP_Agilent_Keysight/5991-1265EN%20Understanding%20Measurement%20Risk%20-%20White%20Paper%20c20140812%20%5B20%5D.pdf
https://ntrs.nasa.gov/api/citations/20110001581/downloads/20110001581.pdf
https://ntrs.nasa.gov/citations/20110014475
http://isgmax.com/Articles_Papers/SPC%20for%20ATE.pdf
https://www.qualitymag.com/articles/97680-the-force-of-decision-rules-applying-specific-and-global-risk-to-star-wars#:~:text=Decision%20rules%20are%20the%20Force%20of%20metrology.%20They,rules%20can%20be%20complex%20and%20challenging%20to%20understand.
https://www.qualitymag.com/articles/97735-unraveling-the-tom-brady-deflategate
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Appendix A Examples  
 

UKAS LAB Example 
 

UKAS LAB 48 has several great examples of decision rules, and we highly recommend anyone wanting 

more examples than covered in this document, to refer to this excellent document. The example we 

present here is a more common one in industry that should never happen. That is an example of simple 

acceptance where only the measured value is said to “pass” when inside of the tolerance limits.  

The problem with allowing decision rules that do not consider measurement uncertainty. 

Conformity statements under ISO/IEC 17025:2017 require a Decision Rule (3.7) that takes account of 

measurement uncertainty. Some might argue that it is possible to 'take account' by ignoring it if that is 

what the customer requests; however, this seems to require a rather contradictory belief that you can 

be 'doing something' by 'not doing something' (is it possible to 'obey a red stop light' by 'not obeying a 

red stop light'?) (26) 

Despite the grammatical and logical inconsistency in this approach, others also argue that it is allowable 

because 'the customer accepts the risk associated with ignoring uncertainty'. This too is a flawed 

argument as will be shown by a simple example…  

Suppose that for some hypothetical reason, Simple Acceptance with no account of measurement 

uncertainty was defined to be an acceptable Decision Rule i.e. PASS when the measured value is within 

the stated tolerance interval and uncertainty plays no part in the decision process…  

Also suppose that, for a particular measurement there is a tolerance of ±1 and the measured value 

equals 0.5.  

As the value is within the tolerance interval the result is therefore declared to be a PASS regardless of 

the measurement uncertainty (Figure 34).  

In such a scenario, further evaluation is required to assess the conformity acceptance by the end-user. 

Simple acceptance may be specified with additional accompanying TUR or Cm requirements. 
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Figure 34: One of Several Great Examples in UKAS LAB 48. 

 

In fact, all of the following measurement scenarios will result in a PASS according to this rule… (27) 
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Specific Risk Examples  
 

Specific Risk Calculations for two-sided tolerances 

We are calculating our Conformance probability for 97.50 % Confidence for symmetrical tolerances. We 

calculate the Guard band Multiplier by using the formula in Excel of NORM.S.INV (0.975)/2. 

We then use this number of 0.845 as our GB Multiplier as follows.  

For the Guard band upper limit, we have 1 – (GB Multiplier * Coverage Factor * Standard Measurement 

Uncertainty) 

1 – (0.980 * (2 * 0.125)) = 0.7550 

For the Guard band lower limit, we have -1 + (GB Multiplier * Coverage Factor *Standard Measurement 

Uncertainty) 

-1 + (0.980 * (2 * 0.125)) = -0.7550 

The formula can be simplified to Acceptance Limit = Tolerance Limit ± Guard band multiplier * Expanded 

Measurement Uncertainty.    

 

Specific Risk Calculations for one-sided tolerances 

What we are calculating is our Conformance probability for 97.50 % Confidence using a single-sided 

tolerance. We calculate the Guard band Multiplier by using the formula in Excel of NORM.S.INV (0.975). 

Our Standard Measurement Uncertainty is 0.125 units.  

We then use this number of 1.960 as our GB Multiplier as follows.  

If the single-sided tolerance is an upper tolerance: 

For the Guard band upper limit, we have 1 – (GB Multiplier * Coverage Factor * Standard Measurement 

Uncertainty) 

1 – (1.960 * (2 * 0.125)) = 0.51 

If the single-sided tolerance is a lower tolerance: 

For the Guard band lower limit, we have -1 + (GB Multiplier * Coverage Factor *Standard Measurement 

Uncertainty) 

-1 + (1.960 * (2 * 0.125)) = -1.49 

The formula can be simplified to Acceptance Limit = Tolerance Limit ± Guard band multiplier * Expanded 

Measurement Uncertainty.    
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Morehouse Load Cell Example - Specific Risk 
 

What would the risk document be without a force example for Specific Risk?   

A customer sent their 10,000 N load cell in for calibration. The purchase order indicates calibration to 

the manufacturer’s specification.  

Since the purchase order is incomplete regarding pass/fail criteria and how measurement uncertainty is 

taken into account the customer is contacted and presented with several options based on their risk 

requirements.  

The customer decides to rewrite the order. The new purchase order reads calibrate using a tolerance of 

0.1 % of full scale (± 10 N) taking measurement uncertainty (U95.45 %) into account using specific risk 

calculations. Fail if the PFA for either side > 2.5 %, otherwise pass.  

Step 1 Calibrate the equipment that we will need to determine the Standard Uncertainty (k =1) of the 

Measurement Process for this calibration.  

For simplistic sake, we will look at the 10,000 N point.  

10,000 N force was applied three times and the instrument read 10,000 10,002 10,001.  

Taking the standard deviation of these numbers =stdev(10,000 10,002 10,001) we get 1 

The resolution of the equipment is 1 N.  

The CMC of the reference standard is 0.2 N. 

 √(
𝐂𝐌𝐂

𝐤𝐂𝐌𝐂
)

𝟐

+  (
𝐑𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐔𝐔𝐓

√𝟏𝟐
)

𝟐

+  (
𝐑𝐞𝐩𝐞𝐚𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲𝐔𝐔𝐓

𝟏
)

𝟐

+ ⋯ (𝐮𝑶𝒕𝒉𝒆𝒓)𝟐 

Thus, the formula for Standard Uncertainty of the Measurement Process becomes.  

√(
𝟎.𝟐

𝟐
)

𝟐
+  (

𝟏

√𝟏𝟐
)

𝟐
+ (

𝟏

𝟏
)

𝟐
= 1.04563 N 

We now have everything we need to calculate Guard Banded Acceptance Limits and PFA 

A 10,000 N load cell has a tolerance of ± 0.1 % of full scale.  

Measured Value = 10,000 N.  

Upper Tolerance = 10,010 N. 

Lower Tolerance = 9,990 N.  

ResolutionUUT = 1 N.  

RepeatabilityUUT = 1 N 

Measured Value = 10,001 N. 
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Standard Uncertainty = 1.04563 N. 

 

Step 2 Calculate Acceptance Limits 

We are calculating is our Conformance probability for 97.50 % Confidence for symmetrical tolerances. 

We calculate the Guard band Multiplier by using the formula in Excel of NORM.S.INV (0.975)/2. 

We then use this number of 0.98 as our GB Multiplier as follows.  

For the Guard band upper limit, we have 10010 – (GB Multiplier * Coverage Factor * Standard 

Measurement Uncertainty) 

10010 – (0.980 * (2 *1.04563)) = 10007.9506 

For the Guard band lower limit, we have 9990 + (GB Multiplier * Coverage Factor *Standard 

Measurement Uncertainty) 

9990 + (0.980 * (2 * 0.125)) = 9992.0494 

 

Figure 35: Graph showing the GB Acceptance Limits to limit PFA to 2.5 % 

 

Thus, our acceptance limit is between 9992.0494 and 10007.9506 as any measured value between these 

two values will have less than 2.5 % PFA. 

Step 3 Calculate PFA 

Risk Upper = NORM.DIST(10001, 10010, 1.04563, TRUE) = 0 % 

Risk Lower = 1- NORM.DIST(10001, 9990, 1.04563, TRUE)) = 0 %  

Total Risk = 0 % 

  

-L +L

-A +A
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9985 9990 9995 10000 10005 10010 10015
Deviation from Nominal

ILAC G8 Risk Probabilities
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Additional Proof 

One can use the Upper or Lower GB Acceptance Limit to verify the GB acceptance limits.  

Risk Upper = NORM.DIST(10007.950603, 10010, 1.04563, TRUE) = 2.5 % 

 

Scale Example Where the Resolution is the Same as the Accuracy - Specific Risk 

 
In this very simple example, we have a common kitchen scale that has an accuracy of ±1g with a 

resolution of 1g. Without giving this much thought, the initial assumption would be that the scale can 

accurately measure typical cooking/baking ingredients to ±1g. 

 

The model shown is a MyWeigh KD-7000 

We are baking a cake and since baking is chemistry, the recipe calls for 3,100 grams of flour ±5g (~6.8 

pounds). During the weighing process, we were able to accurately dispense exactly 3,103 grams of flour 

per our recipe and we were confident that it was accurate to ±1g. 
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Let’s do a quick risk assessment to ensure we have an in-tolerance probability of 98 % (2 % risk). Since 

we know nothing about the distribution concerning the scale, we default to a conservative estimate of 

1g divided by SQRT(3) to yield ~91.6 % confidence for a 1-sigma value of 0.5774g and insert that value 

into our risk calculator. This is all the information available. 

 

Upper Tolerance TU 3105

Lower Tolerance TL 3095

Nominal Value (NV) 3100

Measured Value xm 3103.0000

Measurement Unc um 0.5774

Maximum Allowable Risk (PFA) 2.0000%

Guarded Rejection Certainty 95.00%

Use guarded rejection as relaxed acceptance limits? FALSE

Tolerance T± 5.00

Probability of Conformance (pc) 99.973%

Probability of NonConformance (1 - pc) 0.027%

Risk Calculator



Page 66 of 95 
 

 

Figure 36 Graph showing the GB Acceptance Limits to limit PFA to 2.0 % 

It appears our in-tolerance probability is 99.973 % (we wanted at least 98 %), and we are within our 

guarded acceptance limits with a probability of non-conformance at 0.027 %. 

Are we confident about that measurement, and is our uncertainty information complete? Let’s take a 

more intricate look at our process. 

While true, the scale is accurate to ±1 g, the accuracy is equal to the resolution of the instrument. 

Additionally, there is no uncertainty concerning the actual calibration of the scale, any repeatability or 

reproducibility studies, and the resolution isn’t properly considered. 

While we don’t have access to the calibration uncertainty, an assumption will be made that the 

calibration uncertainty is ±0.25g at k = 2. Using a reliable mass to gauge repeatability and reproducibility 

(in this case it’s a granite mortar and pestle), we will add those two components, along with the scale’s 

resolution. 

-L +L

-A +A
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3090 3092 3094 3096 3098 3100 3102 3104 3106 3108 3110
Deviation from Nominal

ILAC G8 Risk Probabilities
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Figure 37 Uncertainty budget for the scale 

Now, with a reasonable uncertainty budget in play, we discover our expanded measurement uncertainty 

is ~±2.14 grams at k = 2 and input the 1-sigma value into our risk calculator (1.07g).  

95.00%

Sample Tech 1 Tech 2 Tech 3 Tech 4 Tech 5 Tech 6

1 3,187.000  3,187.000  

2 3,187.000  3,187.000  

3 3,187.000  3,188.000  

4 3,187.000  3,187.000  

5 3,186.000  3,188.000  

6 3,187.000  3,187.000  

7 3,187.000  3,188.000  

8 3,187.000  3,187.000  

9 3,187.000  3,186.000  

10 3,188.000  3,187.000  

Std. Dev. = 471.405E-3 632.456E-3     

Average = 3,187.000  3,187.200      

Variance = 222.222E-3 400.000E-3     

Upper Tol Limit = 3101.00000 3101 #N/A #N/A #N/A #N/A

IQR Upper Tol = 3187 3188.965

IQR Lower Tol = 3187 3186.035

Lower Tol Limit = 3099.00000 3099.00000 #N/A #N/A #N/A #N/A

Grouping = Tech 1 Tech 2

Repeatability = 557.773E-3 F calc 0.642857143 200.00E-3

Reproducibility = 141.421E-3 F crit 4.4139 311.11E-3

df Numerator 1 P-Value

df Denominator 18 43.31%

Between Groups MS

Within Groups MS

If F calc  > F crit , there is significance of Reproducibility data

Population OK,  p-Value >5% 

Outlier Detection Confidence = Repeatability and Reproducibility Worksheet

Error Limit Error Limit Distribution Uncertainty Estimate Degrees Standard Uncertainty

(or Std Unc) (or Std Uncertainty) Type (A/B) DOF? of Freedom Uncertainty Sensitivity

1 Repeatability (Linked to Calc.) 0.557 773 Standard Unc. A N/A 1 0.557 773 351 33.00%

2 Reproducibility (Linked to 0.141 421 Standard Unc. A N/A 18 0.141 421 356 8.37%

3 Scale Accuracy 1.000 000 Rectangular √3 B FALSE 0.577 350 269 34.16%

4 Calibration Uncertainty 0.250 000 Normal (95.45% k=2) B FALSE 0.125  7.40%

5 Scale Resolution 1.000 000 Resolution √12 B FALSE 0.288 675 135 17.08%

Combined Uncertainty = 0.873 729 236 1.690 220 111

0.873 729 236

95.00%

TRUE

6

2.447

2.137 938 422

Uncertainty Budget

Uncertainty Confidence = 

Effective Degrees of freedom = 

Coverage Factor (k) = 

Expanded Uncertainty = 

Error Sources

(Description)

Use Effective Degrees of Freedom?

Combined Uncertainty Results
Combined Uncertainty = 
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With most uncertainties now considered in our budget, our probability of conformance is ~96.9% and 

our probability of non-conformance is now ~3.1%. 

 

Graphically, we can see the effect it has on our risk tolerance. 

 

Figure 38 Graph showing the GB Acceptance Limits to limit PFA to 2.0 % 

What was originally considered a “pass” previously, is now considered a “failure” because the measured 

value is outside the acceptance limits and the right tail of the distribution is outside the tolerance limits 

by ~3.1 % (we wanted no more than 2 %).  

Upper Tolerance TU 3105

Lower Tolerance TL 3095

Nominal Value (NV) 3100

Measured Value xm 3103.0000

Measurement Unc um 1.0700

Maximum Allowable Risk (PFA) 2.0000%

Guarded Rejection Certainty 95.00%

Use guarded rejection as relaxed acceptance limits? FALSE

Tolerance T± 5.00

Probability of Conformance (pc) 96.920%

Probability of NonConformance (1 - pc) 3.080%

Risk Calculator

-L +L

-A +A

Nom

3090 3092 3094 3096 3098 3100 3102 3104 3106 3108 3110
Deviation from Nominal

ILAC G8 Risk Probabilities
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Note: In the case of our recipe, the risk is likely low if we are off by 3.1 %, though what if this were a 

mixture for a medication where too much would result in serious side effects? Though this is a simple 

example, it highlights what happens when measurement uncertainty is not calculated correctly.   

Measurement Uncertainty Example (Omitting Resolution of the UUT) 
 

In this example, we will take a budget of a load cell reference standard at the 10,000 lbf calibration point 

and compare the probability of conformance (Pass) with considering the contributors to measurement 

uncertainty and compare that against ignoring contributors such as resolution.  

 

Figure 36 An Example of a Load Cell Measurement Uncertainty Budget using the Welch-Satterthwaite equation. 

 

 

In our example, we have these contributors to measurement uncertainty. When accounted for, the 

expanded measurement uncertainty is 0.66 N.  

Note: The resolution of the best existing device is used in this example. The contribution of resolution for 

this MU example of 0.025 N device accounts for about 0.09 % of the overall budget and the MU 

contribution for repeatability of the best existing device accounts for about 0.18 % of the overall MU 

budget. One would typically substitute the repeatability and resolution contribution of the instrument 

being calibrated. Since these contributors are such a small percentage, we are leaving them.  

Laboratory

Parameter Example Load Cell Range 10000 Sub-Range

Technician

Date

Uncertainty Contributor Magnitude Type Distribution Divisor df Std. Uncert

Variance 

(Std. 

Uncert^2)

% 

Contribution
u^4/df

Repeatability Between Techs 0.06039087 A Normal 1.000 27 60.39E-3 3.65E-3 3.40% 492.6E-9

Reproducibility Between Techs 0.043240245 A Normal (68.26%, k=1) 1.000 2 43.24E-3 1.87E-3 1.74% 1.7E-6

Repeatability 14.0343E-3 A Normal 1.000 3 14.03E-3 196.96E-6 0.18% 12.9E-9

ASTM E74 LLF 25.0000E-3 A Normal 1.000 32 25.00E-3 625.00E-6 0.58% 12.2E-9

Resolution of UUT 25.0000E-3 B Resolution 3.464 200 7.22E-3 52.08E-6 0.05% 13.6E-12

Environmental Conditions 150.0000E-3 B Rectangular 1.732 200 86.60E-3 7.50E-3 6.99% 281.3E-9

Stability of  Ref Standard 400.0000E-3 B Rectangular 1.732 200 230.94E-3 53.33E-3 49.72% 14.2E-6

Miscellaneous Error 300.0000E-3 B Rectangular 1.732 200 173.21E-3 30.00E-3 27.97% 4.5E-6

Morehouse CMC (Ref Lab) 200.0000E-3 B Expanded (95.45% k=2) 2.000 200 100.00E-3 10.00E-3 9.32% 500.0E-9

327.53E-3 107.28E-3 100.00% 21.8E-6

528

95.45% 2.00

0.66 0.00657%

Combined Uncertainty (uc)=

Measurement Uncertainty Budget Worksheet
Morehouse Example 

Standards Used Deadweight to Calibrate Load Cells Example 

Effective Degrees of Freedom

Expanded Uncertainty (U) k  =

Coverage Factor (k ), Confidence Interval =

Repeatability Between Techs 0.06039087

Reproducibility Between Techs 0.043240245

Repeatability 14.0343E-3

ASTM E74 LLF 25.0000E-3

Resolution of UUT 25.0000E-3

Environmental Conditions 150.0000E-3

Stability of  Ref Standard 400.0000E-3

Miscellaneous Error 300.0000E-3

Morehouse CMC (Ref Lab) 200.0000E-3
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Morehouse has created documents that explain the measurement uncertainty calculation above that 

can be found here.  

The device we wish to calibrate is a 10,000 N device with a tolerance of ± 10 N.  

The customer has stated Please calibrate “As Found” Manufacturer 10,000 N Load cell S/N XXXX with 

indicator Manufacturer Readout XXXX to 10,000 N in Compression only and issue a “Pass” when the 

PFA using Specific Risk is ≤ 5 %, Otherwise Fail.   

For simplistic sake, we will look at the 10,000 N point.  

10,000 N force was applied three times and the instrument read 10,008 10,006 10,008.  

Taking the standard deviation of these numbers =stdev(10,008 10,006 10,008) we get Repeatability UUT= 

1.154701 N 

The resolution of the equipment is 2 N.  

The CMC uncertainty of the reference standard is 0.66 N. 

 √(
𝐂𝐌𝐂

𝐤𝐂𝐌𝐂

)
𝟐

+  (
𝐑𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐔𝐔𝐓

√𝟏𝟐
)

𝟐

+  (
𝐑𝐞𝐩𝐞𝐚𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲𝐔𝐔𝐓

𝟏
)

𝟐

+ ⋯ (𝐮𝑶𝒕𝒉𝒆𝒓)𝟐 

Thus, the formula for Standard Uncertainty of the Measurement Process becomes.  

√(
𝟎.𝟔𝟔

𝟐
)

𝟐
+  (

𝟐

√𝟏𝟐
)

𝟐
+ (

𝟏.𝟏𝟓𝟒𝟕𝟎𝟏

𝟏
)

𝟐
= 1.332504 N 

We now have everything we need to calculate Guard Banded Acceptance Limits and PFA 

A 10,000 N load cell has a tolerance of ± 0.1 % of full scale.  

Measured Value = 10,008 N.  

Upper Tolerance = 10,010 N. 

Lower Tolerance = 9,990 N.  

Measured Value = 10,008 N. 

Resolution UUT = 2 N. 

Repeatability UUT= 1.154701 N 

Standard Uncertainty = 1.332504 N 

https://mhforce.com/documentation-tools/?_sft_support-item-tag=guidance-document
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Figure 37 Load Cell Example Showing 6.669 % Probability of Nonconformance. 

 

 

Risk Upper = NORM.DIST(10008, 10010,1.332504, TRUE) = 6.6686 % 

Risk Lower = 1- NORM.DIST(10008, 9990,1.332504, TRUE)) = 0 %  

Total Risk = 6.6686 % 

When the measurement uncertainty is properly accounted for, the device fails.  

Now let us look at what happens when we omit contributors such as the resolution of the UUT.  

 

√(
𝟏.𝟐𝟓

𝟐
)

𝟐
+  (

𝟏.𝟏𝟓𝟒𝟕𝟎𝟏

𝟏
)

𝟐
= 1.20093 N 

Risk Upper = NORM.DIST(10008, 10010,1.20093, TRUE) = 4.7919 % 

Risk Lower = 1- NORM.DIST(10008, 9990, 1.20093, TRUE)) = 0 %  

Total Risk = 4.7919 % 

When a contributor such as the resolution of the UUT is not accounted for, the devices now pass.   

 

(L) 9990 (L) +10010

(A) 9992.1918 (A) +10007.8082
Nom.

9985 9990 9995 10000 10005 10010 10015
Deviation from Nominal

ILAC G8 Risk Probabilities
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Mathcad JCGM Resistor Example for Calculating Global Risk 
 

The formula for Global Risk, as seen from the producer and consumer, is a joint probability distribution 

function. It's the probability the item produced is assumed to be in-tolerance when, in fact, it is Out Of 

Tolerance (OOT). 

The formulas shown below were calculated using Mathcad Prime 9.0 taking the following arguments: 

Upper Test Limit (TU) Lower Test Limit (TL) 
Upper Acceptance Limit (AU) 

*Calculated with Excel 
Lower Acceptance Limit (AL) 

*Calculated with Excel 
1500.20 1499.80 1500.166 816 1499.833 183 

  
Nominal value (yo) = 1500  
1-sigma total measurement uncertainty (um) = 0.04  
  
Cm = ((TU - TL) / 4 x um) = 2.5 
 

 

 

yo = 1500 TU = 1500.20 TL = 1499.80 AU = 1500.166 816 AL = 1499.833 183 

𝑢0 =  
𝑇𝑈 − 𝑇𝐿

2
 

 

 

Where cnorm = the cumulative normal function, and z is the placeholder for the integration 
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Production Yield Example on Calculating Cost Associated with PFA and PFR (Do I have 

Measuring Equipment Capable of Limiting Costly Rework) 

 
For the proceeding example, we will assume the Unit Under Test (UUT) specification has no historical 

information regarding EOPR. The specification shall be taken at a face value of ±0.2Ω (essentially 1-

sigma). 

Measurement Capability Index, Cm, is defined as 

              
The variable changing, in the examples shown, going forward, will be uMeas. All other variables, apart 
from the calculated ±Acceptance Limits, remain constant. 
 
Before proceeding, it should be noted there are significant mathematics going on in the background to 

calculate the risk values, Guard Bands, and product yield values. The VBA code will be provided in the 

appendix to replicate these results. The functions are listed below with an explanation of the input 

parameters. 

Functions – NOTE ALL VALUES INPUT INTO THESE FUNCTIONS ARE ENTERED AS THE DEVIATION FROM 

AN ASSUMED NOMINAL OF ZERO! The exception is uCal. This value is a ± value determined by an 

uncertainty analysis. 

Note: PFA, Probability of conformance, and FAR, are equivalent. PFR, Probability of non-conformance, 

and FRR are equivalent.    

Probability of Conformance = PFA (uUUT, uCal, Llow, Lup, ALow, AUp) 

uUUT = The uncertainty of the Unit Under Test (UUT). This function is for symmetrical 

specifications only and the value can be represented in 2 distinct forms: 

• (Upper Test Limit – Lower Test Limit) / 2 

o (1500.2 – 1499.8) / 2 = 0.2 

• (Upper Test Limit – Lower Test Limit) / NORM.S.INV((1+itp)/2) 

o Where itp = In-Tolerance Probability (e.g. 90 %) = NORM.S.INV((1+0.9)/2)= 1.64485 

o (1500.2 – 1499.8)/1.64485 = 0.12159 

▪ This applies ONLY if you have prior knowledge of the UUT EOPR 

uCal = The 1-sigma uncertainty of the calibration process standards 

• Example: Absolute DMM specification of ±0.08 at k=2 is reduced to 0.08/2 = 0.04 

Llow = Lower Test Limit of the UUT (e.g., -0.2) 

Lup = Upper Test Limit of the UUT (e.g., 0.2) 

ALow = Lower Acceptance Limit of the UUT (e.g., -0.2, it can be the same value as Llow) 

AUp = Upper Acceptance Limit of the UUT (e.g., 0.2, it can be the same value as Lup) 
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Probability of Non-Conformance = PFR (uUUT, uCal, Llow, Lup, ALow, AUp) 

• Takes the same arguments as PFA. 

Probability of Conformance Guard band Multiplier = PFAGBMult (Req, uUUT, uCal, Llow, Lup) 

• Req = The level of risk desired (e.g., 1 % or 0.01) 

• uUUT, uCal, Llow, Lup are the same values described in the previous functions. 

Once the basic Probability of Conformance (Pc), Probability of non-Conformance (Pnc) are calculated, 

we will calculate the Guard Band multiplier, apply the value, and recalculate the Pc/Pnc to validate the 

equipment selection parameters. 

Let's revisit the previous example but this time we will remove the UUT process uncertainty and 

substitute the basic accuracy specification of ±0.2 Ω. The quantity manufactured (100,000), the cost per 

resistor ($13.50), the maximum risk to the consumer (1 %), and the initial Cm of 2.5 (±0.04 Ω 

measurement uncertainty) remain the same. We will substitute the previous itp (~90 %) by using 

binomial confidence bounds in lieu of the original analysis value to test this hypothesis. 

Step 1 - Calculate the base Probability of Conformance. 

Probability of Conformance = PFA (uUUT, uCal, Llow, Lup, ALow, AUp) 

 PFA = (0.2, 0.04, -0.2, 0.2, -0.2, 0.2) = 3.386% 

Step 2 – Calculate the base Probability of Non-Conformance 

Probability of Non-Conformance = PFR (uUUT, uCal, Llow, Lup, ALow, AUp) 

 PFR = (0.2, 0.04, -0.2, 0.2, -0.2, 0.2) = 4.335% 

Step 3 – Since the Pc is >1%, we need to calculate the Probability of Conformance Guard band 

Multiplier. 

Probability of Conformance Guard band Multiplier = PFAGBMult (Req, uUUT, uCal, Llow, Lup) 

 PFAGBMult = (0.01, 0.04, -0.2, 0.2) = 83.408% 

Step 4 – Multiply the UUT accuracy specification by the PFAGBMult percentage. This provides the 

±Acceptance limits. 

Probability of Conformance = PFA (uUUT, uCal, Llow, Lup, ALow, AUp) 

 ±A = 0.2 x 83.408% = ±0.166 816 

Step 5 – Recalculate the Probability of Conformance substituting the original estimation of ALow and 

AUp with the result from step 4. 

Probability of Conformance = PFA (uUUT, uCal, Llow, Lup, ALow, AUp) 

 PFA = (0.2, 0.04, -0.2, 0.2, -0.166816, 0.166816) = 1 % 

Step 6 - Recalculate the Probability of Non-Conformance substituting the original estimation of ALow 

and AUp with the result from step 4. 
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Probability of Non-Conformance = PFR (uUUT, uCal, Llow, Lup, ALow, AUp) 

 PFR = (0.2, 0.04, -0.2, 0.2, -0.166816, 0.166816) = 10.611 % 

Step 7 – Calculate the probability the UUT will in tolerance. 

 Probability of pass = (1-PFR) + PFA = (0.89389) + 0.01 = 90.389 % 

Step 8 – Calculate the probability the UUT will be out of tolerance. 

 Probability out of tolerance = 1- Probability of pass = 9.611 % 

 Quantity likely to be out of tolerance = 100,000 x 9.611% = 9,611 

Now we will estimate the impact this decision may have on actual production items using the base 

number of 100,000 pieces manufactured. 

Step 9 – Estimate correctly accepted items. 

 100,000 x (1 – PFR) = 100,000 x (1- 10.611 %) = 89,389 

Step 10 – Estimate falsely accepted items. 

 100,000 x PFA = 100,000 x 1 % = 1,000 

Step 11 - Estimate falsely rejected items. 

 (100,000 – (Step 9 + Step 10)) x PFR = (100,000 – 90,389) x 10.611% = 1,020 

Step 12 – Estimate correctly rejected items. 

 100,000 – (Step 9 +Step 10 + Step 11) = 100,000 – 91,409 = 8,591 

Step 13 – Perform a sanity check on the items. 

100,000 – (Step 9 +Step 10 + Step 11 + Step 12) = 100,000 – 100,000 = 0 

Step 14 – Perform a sanity check on the probabilities. 

 Correctly Accept = 89.389 % (89,389) 

 Falsely Accept = 1 % (1,000) 

 Falsely Rejected = 1.02 % (1,020) 

 Correctly Reject = 8.59 % (8,591) 

 Total Probability of Non-Conformance (calculated with the function) = 10.611 % 

Falsely Accepted + Falsely Rejected + Correctly Rejected = 1 % + 1.02 % + 8.59 % = Probability Non-

Conformance. 

 = 89.398 % + (Falsely Accepted + Falsely Rejected + Correctly Rejected) = 100 % 

Step 15 – Create binomial confidence bounds (OC curve) validating the approximate yield using Excel. 



Page 76 of 95 
 

 Confidence = 99 % (needed for 1 % Global Risk to the consumer) 

 Trials = 100,000 

 Successes = Correct Accept + Fale Accept = 89,389 + 1,000 = 90,389 

 Upper Binomial = 1 - (BETA.INV ((1 - Confidence) * 0.5, Trials - Successes, Successes + 1)) 

   = 90.63 % 

 Lower Binomial = 1 - (BETA.INV (Confidence, Trials - Successes + 1, Successes)) 

   = 90.17 % 

Note: OC Curve is the operating characteristic (OC) that indicates the probability of acceptance of the 

production batch versus the percentage of defective units 

Step 16 – Using the lower binomial result, create a conformity statement. "There is 99% confidence the 

yield is at least 90.17%." 

Now we will substitute ONLY the 1-sigma, total measurement uncertainty results, obtained by trying 

different DMM's in our model. It should be noted, the actual uncertainty analysis of each DMM 

substituted is outside the scope of this document. A great suggestion for learning about measurement 

uncertainty can be found in the UKAS document M3003. 
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Appendix B Code - VBA Code (copy and paste into a VBA module in 

Excel). 
 

Reliability –Additional Sample Size and Binomial Confidence Bounds 

Additional Sample Size 
Function RevisedSample(RelTarget As Double, ConfTarget As Double, Failures As 

Double) As Double 

'Calculates new, required sample size to achieve required reliability with 

failures 

'RelTarget = Target Reliability 

'ConfTarget = Confidence target about required reliability 

'Failures = Total number of recorded failures 

 

With Application 

Dim beta As Double 

Dim InitSampleSize As Double 

Dim initReliability As Double 

Dim x As Double 

Dim y As Double 

InitSampleSize = .RoundUp(Log(1 - ConfTarget) / Log(RelTarget), 0) ' 

Calculates the initial sample size based on reliability constraints 

 

beta = 1 - RelTarget 

initReliability = .Beta_Inv(ConfTarget, 1, InitSampleSize) 

 

x = .Beta_Inv(ConfTarget, Failures + 1, InitSampleSize - Failures) 

y = InitSampleSize 

 

If Failures = 0 Then 

    y = InitSampleSize 

  Else 

    Do Until x <= beta 

        y = y + 1 

        x = .Beta_Inv(ConfTarget, Failures + 1, y - Failures) 

    Loop 

End If 

RevisedSample = y 

End With 

End Function 
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Binomial Acceptance Bounds 
Function BinomLow(Successes As Double, trials As Double, Confidence As 

Double) As Double 

With Application 

If Successes = 0 Then 

  BinomLow = 0 

Else 

  BinomLow = 1 - (.Beta_Inv(Confidence, trials - Successes + 1, Successes)) 

End If 

 

End With 

End Function 

 
Function BinomHigh(Successes As Double, trials As Double, Confidence 

As Double) As Double 

With Application 

 

If (trials - Successes) = 0 Then 

  BinomHigh = 1 

Else 

  BinomHigh = 1 - (.Beta_Inv((1 - Confidence) * 0.5, trials - Successes, 

Successes + 1)) 

End If 

 

End With 

End Function 

 

PFA – Probability the Item may be out of tolerance but is accepted (false acceptance) – 

uses the function BiVar 
 

Function PFA(uUUT As Double, uCal As Double, Llow As Double, LUp As Double, 

ALow As Double, AUp As Double) As Double 

'Z540.3 Risk Software Functions 

' Provides Risk probability and Guard Band calculations. 

' Dependent on NormalDist module probability functions. 

' Probability of False Accept 

' (Probability the UUT bias is out of tolerance and the UUT is accepted by 

the Calibrator.) 

' 

' Inputs: 

'   uUUT: UUT bias std uncertainty (assume 1-sigma) 

'   uCal: Calibration process std uncertainty (1-sigma) 

'   LLow: Lower tolerance limit 

'   LUp:  Upper tolerance limit 

'   ALow: Lower acceptance limit 

'   AUp:  Upper acceptance limit 

 

    Dim a As Double 
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    Dim b As Double 

    Dim cor As Double 

    Dim uDev As Double 

     

    uDev = Sqr(uUUT ^ 2 + uCal ^ 2) 

    cor = uUUT / uDev 

    a = BiVar(Llow / uUUT, AUp / uDev, cor) - BiVar(Llow / uUUT, ALow / uDev, 

cor) 

    b = BiVar(-LUp / uUUT, -ALow / uDev, cor) - BiVar(-LUp / uUUT, -AUp / 

uDev, cor) 

    PFA = a + b 

End Function 

 

PFR – Probability the Item be in tolerance but rejected (false rejection) – uses the 

function BiVar 
 
Function PFR(uUUT As Double, uCal As Double, Llow As Double, LUp As Double, 

ALow As Double, AUp As Double) As Double 

' Probability of False Reject 

' (Probability the UUT bias is in tolerance and the UUT is rejected by the 

Calibrator.) 

' 

' Inputs: 

'   uUUT: UUT bias std uncertainty (assume 1-sigma) 

'   uCal: Calibration process std uncertainty (1-sigma) 

'   LLow: Lower tolerance limit 

'   LUp:  Upper tolerance limit 

'   ALow: Lower acceptance limit 

'   AUp:  Upper acceptance limit 

    Dim a As Double 

    Dim b As Double 

    Dim cor As Double 

    Dim uDev As Double 

    uDev = Sqr(uUUT ^ 2 + uCal ^ 2) 

    cor = uUUT / uDev 

    a = BiVar(LUp / uUUT, ALow / uDev, cor) - BiVar(Llow / uUUT, ALow / uDev, 

cor) 

    b = BiVar(-Llow / uUUT, -AUp / uDev, cor) - BiVar(-LUp / uUUT, -AUp / 

uDev, cor) 

   PFR = a + b 

End Function 
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PFA Guard Band Multiplier - The multiplier found by keeping the false acceptance risk at 

a constant value (e.g. 2%) 
Function PFAGBMult(Req As Double, uUUT As Double, uCal As Double, Llow As 

Double, LUp As Double) As Double 

' Guard Band Multiplier for PFA 

' (Finds a Guard Band multiplier using Bisection.) 

' (Doesn't assume symmetric limits.) 

' 

' Inputs: 

'   Req:  The PFA requirement (e.g. 2%) 

'   uUUT: UUT bias standard uncertainty (assume 1-sigma) 

'   uCal: Calibration process standard uncertainty (1-sigma) 

'   LLow: Lower tolerance limit 

'   LUp:  Upper tolerance limit 

     

    Dim AUp As Double 

    Dim ALow As Double 

    Dim GBMult As Double 

    Dim EstPFA As Double 

    Dim Chg As Double 

    Dim Prec As Double 

     

    ' Set precision of answer 

    Prec = 0.000000001 

         

    ' Start with acceptance limit at tolerance limit. 

    AUp = LUp 

    ALow = Llow 

    GBMult = 1 

     

    ' If the PFA is above the requirement, start search. 

    EstPFA = PFA(uUUT, uCal, Llow, LUp, ALow, AUp) 

    If (EstPFA > Req) Then 

        ' Find initial GBMult where PFA is below requirement 

        Chg = 0.05 

        Do 

            GBMult = GBMult - Chg 

            AUp = LUp * GBMult 

            ALow = Llow * GBMult 

            EstPFA = PFA(uUUT, uCal, Llow, LUp, ALow, AUp) 

        Loop Until (EstPFA <= Req) 

         

        ' Search between acceptance and tolerance limits to meet requirement 

        Do Until ((EstPFA >= Req - Prec) And (EstPFA <= Req)) 

            Chg = Chg / 2 

            If (EstPFA < Req) Then 

                GBMult = GBMult + Chg 

            Else 

                GBMult = GBMult - Chg 

            End If 

            AUp = LUp * GBMult 

            ALow = Llow * GBMult 
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            EstPFA = PFA(uUUT, uCal, Llow, LUp, ALow, AUp) 

        Loop 

    End If 

     

    ' Return Guard Band Multiplier value 

    PFAGBMult = GBMult 

End Function 

BiVar - The Bivariate cumulative normal distribution function – Uses the function 

CumNorm Function 

Function BiVar(a As Double, b As Double, r As Double) As Double 

'Normal Distribution Code 

' Graeme West 

' 2004 

' Cumulative Bivariate Normal Distribution 

' Finds Bivariate Normal integral with limits: 

'   x: -inf to A 

'   y: -inf to B 

'   r = correlation(x,y) 

' This is the Genz DW2 double precision algorithm. 

    Dim i As Integer 

    Dim x(5) As Double, W(5) As Double 

    Dim h1 As Double, h2 As Double 

    Dim LH As Double, h12 As Double 

    Dim h3 As Double, h5 As Double, h6 As Double, h7 As Double 

    Dim r1 As Double, R2 As Double, r3 As Double, rr As Double 

    Dim AA As Double, ab As Double 

     

    x(1) = 0.04691008 

    x(2) = 0.23076534 

    x(3) = 0.5 

    x(4) = 0.76923466 

    x(5) = 0.95308992 

     

    W(1) = 0.018854042 

    W(2) = 0.038088059 

    W(3) = 0.0452707394 

    W(4) = 0.038088059 

    W(5) = 0.018854042 

     

h1 = a 

    h2 = b 

    h12 = (h1 * h1 + h2 * h2) / 2 

    LH = 0 

        If Abs(r) >= 0.7 Then 

         R2 = 1 - r * r 

         r3 = Sqr(R2) 

         

         If r < 0 Then 

          h2 = -h2 

         End If 
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        h3 = h1 * h2 

        h7 = Exp(-h3 / 2) 

         

        If Abs(r) < 1 Then 

            h6 = Abs(h1 - h2) 

            h5 = h6 * h6 / 2 

            h6 = h6 / r3 

            AA = 0.5 - h3 / 8 

            ab = 3 - 2 * AA * h5 

            LH = 0.13298076 * h6 * ab * (1 - CumNorm(h6)) - Exp(-h5 / R2) * 

(ab + AA * R2) * 0.053051647 

            For i = 1 To 5 

                r1 = r3 * x(i) 

                rr = r1 * r1 

                R2 = Sqr(1 - rr) 

                LH = LH - W(i) * Exp(-h5 / rr) * (Exp(-h3 / (1 + R2)) / R2 / 

h7 - 1 - AA * rr) 

            Next i 

        End If 

         BiVar = LH * r3 * h7 + CumNorm(Min(h1, h2)) 

         

        If r < 0 Then 

            BiVar = CumNorm(h1) - BiVar 

        End If 

    Else 

        h3 = h1 * h2 

        If r <> 0 Then 

            For i = 1 To 5 

                r1 = r * x(i) 

                R2 = 1 - r1 * r1 

                LH = LH + W(i) * Exp((r1 * h3 - h12) / R2) / Sqr(R2) 

            Next i 

        End If 

        BiVar = CumNorm(h1) * CumNorm(h2) + r * LH 

    End If     

End Function 

 
Function CumNorm(x As Double) As Double 

' Normal Distribution Code 

' Graeme West 

' 2004 

' Normal Distribution Function 

 ' Declarations. 

    Dim XAbs As Double 

    Dim Build As Double 

    Dim Exponential As Double 

     

    XAbs = Abs(x) 

    If XAbs > 37 Then 

        CumNorm = 0 

    Else 
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        Exponential = Exp(-XAbs ^ 2 / 2) 

        If XAbs < 7.07106781186547 Then 

            Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 

            Build = Build * XAbs + 6.37396220353165 

            Build = Build * XAbs + 33.912866078383 

            Build = Build * XAbs + 112.079291497871 

            Build = Build * XAbs + 221.213596169931 

            Build = Build * XAbs + 220.206867912376 

            CumNorm = Exponential * Build 

            Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 

            Build = Build * XAbs + 16.064177579207 

            Build = Build * XAbs + 86.7807322029461 

            Build = Build * XAbs + 296.564248779674 

            Build = Build * XAbs + 637.333633378831 

            Build = Build * XAbs + 793.826512519948 

            Build = Build * XAbs + 440.413735824752 

            CumNorm = CumNorm / Build 

        Else 

            Build = XAbs + 0.65 

            Build = XAbs + 4 / Build 

            Build = XAbs + 3 / Build 

            Build = XAbs + 2 / Build 

            Build = XAbs + 1 / Build 

            CumNorm = Exponential / Build / 2.506628274631 

        End If 

    End If 

    If x > 0 Then CumNorm = 1 - CumNorm 

End Function 

 

Ancillary functions required (also copy into the same VB module): 

• Error Function (Erf) 

• Error Function Complimentary (ErfC) 

• Inverse Normal Distribution (InvNormalDist) 

• Minimum (Min) 

• UUT Uncertainty Function (uutUnc) 
 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

'Cephes Math Library Release 2.8:  June, 2000 

'Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier 

' 

'Contributors: 

'    * Sergey Bochkanov (ALGLIB project). Translation from C to 

'      pseudocode. 

' 

'See subroutines comments for additional copyrights. 

' 

'>>> SOURCE LICENSE >>> 

'This program is free software; you can redistribute it and/or modify 

'it under the terms of the GNU General Public License as published by 

'the Free Software Foundation (www.fsf.org); either version 2 of the 
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'License, or (at your option) any later version. 

' 

'This program is distributed in the hope that it will be useful, 

'but WITHOUT ANY WARRANTY; without even the implied warranty of 

'MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

'GNU General Public License for more details. 

' 

'A copy of the GNU General Public License is available at 

'http://www.fsf.org/licensing/licenses 

' 

'>>> END OF LICENSE >>> 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

'Routines 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

'Error function 

' 

'The integral is 

' 

'                          x 

'                           - 

'                2         | |          2 

'  erf(x)  =  --------     |    exp( - t  ) dt. 

'             sqrt(pi)   | | 

'                         - 

'                          0 

' 

'For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise 

'erf(x) = 1 - erfc(x). 

' 

' 

'ACCURACY: 

' 

'                     Relative error: 

'arithmetic   domain     # trials      peak         rms 

'   IEEE      0,1         30000       3.7e-16     1.0e-16 

' 

'Cephes Math Library Release 2.8:  June, 2000 

'Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier 

' 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Private Function Erf(ByVal x As Double) As Double 

    Dim Result As Double 

    Dim XSq As Double 

    Dim s As Double 

    Dim p As Double 

    Dim q As Double 

 

    s = Sgn(x) 

    x = Abs(x) 

    If x < 0.5 Then 

        XSq = x * x 

        p = 7.54772803341863E-03 

        p = 0.288805137207594 + XSq * p 
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        p = 14.3383842191748 + XSq * p 

        p = 38.0140318123903 + XSq * p 

        p = 3017.82788536508 + XSq * p 

        p = 7404.07142710151 + XSq * p 

        p = 80437.363096084 + XSq * p 

        q = 0 

        q = 1 + XSq * q 

        q = 38.0190713951939 + XSq * q 

        q = 658.07015545924 + XSq * q 

        q = 6379.60017324428 + XSq * q 

        q = 34216.5257924629 + XSq * q 

        q = 80437.363096084 + XSq * q 

        Result = s * 1.12837916709551 * x * p / q 

        Erf = Result 

        Exit Function 

    End If 

    If x >= 10 Then 

        Result = s 

        Erf = Result 

        Exit Function 

    End If 

    Result = s * (1 - ErfC(x)) 

 

    Erf = Result 

End Function 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

'Complementary error function 

' 

' 1 - erf(x) = 

' 

'                          inf. 

'                            - 

'                 2         | |          2 

'  erfc(x)  =  --------     |    exp( - t  ) dt 

'              sqrt(pi)   | | 

'                          - 

'                           x 

' 

' 

'For small x, erfc(x) = 1 - erf(x); otherwise rational 

'approximations are computed. 

' 

' 

'ACCURACY: 

' 

'                     Relative error: 

'arithmetic   domain     # trials      peak         rms 

'   IEEE      0,26.6417   30000       5.7e-14     1.5e-14 

' 

'Cephes Math Library Release 2.8:  June, 2000 

'Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier 

' 

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
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Private Function ErfC(ByVal x As Double) As Double 

    Dim Result As Double 

    Dim p As Double 

    Dim q As Double 

 

    If x < 0# Then 

        Result = 2 - ErfC(-x) 

        ErfC = Result 

        Exit Function 

    End If 

    If x < 0.5 Then 

        Result = 1 - Erf(x) 

        ErfC = Result 

        Exit Function 

    End If 

    If x >= 10 Then 

        Result = 0 

        ErfC = Result 

        Exit Function 

    End If 

    p = 0 

    p = 0.56418778255074 + x * p 

    p = 9.67580788298727 + x * p 

    p = 77.0816173036843 + x * p 

    p = 368.519615471001 + x * p 

    p = 1143.26207070389 + x * p 

    p = 2320.43959025164 + x * p 

    p = 2898.02932921677 + x * p 

    p = 1826.33488422951 + x * p 

    q = 1 

    q = 17.1498094362761 + x * q 

    q = 137.125596050062 + x * q 

    q = 661.736120710765 + x * q 

    q = 2094.38436778954 + x * q 

    q = 4429.61280388368 + x * q 

    q = 6089.54242327244 + x * q 

    q = 4958.82756472114 + x * q 

    q = 1826.33488422951 + x * q 

    Result = Exp(-(x) ^ 2) * p / q 

 

    ErfC = Result 

End Function 

 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

'''' 

'Inverse of Normal distribution function 

' 

'Returns the argument, x, for which the area under the 

'Gaussian probability density function (integrated from 

'minus infinity to x) is equal to y. 

' 

' 
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'For small arguments 0 < y < exp(-2), the program computes 

'z = sqrt( -2.0 * log(y) );  then the approximation is 

'x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z). 

'There are two rational functions P/Q, one for 0 < y < exp(-32) 

'and the other for y up to exp(-2).  For larger arguments, 

'w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). 

' 

'ACCURACY: 

' 

'                     Relative error: 

'arithmetic   domain        # trials      peak         rms 

'   IEEE     0.125, 1        20000       7.2e-16     1.3e-16 

'   IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17 

' 

'Cephes Math Library Release 2.8:  June, 2000 

'Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier 

' 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

'''' 

Private Function InvNormalDistribution(ByVal y0 As Double) As Double 

    Dim Result As Double 

    Dim Expm2 As Double 

    Dim S2Pi As Double 

    Dim x As Double 

    Dim Y As Double 

    Dim z As Double 

    Dim Y2 As Double 

    Dim X0 As Double 

    Dim x1 As Double 

    Dim code As Long 

    Dim P0 As Double 

    Dim Q0 As Double 

    Dim P1 As Double 

    Dim Q1 As Double 

    Dim P2 As Double 

    Dim Q2 As Double 

 

    Expm2 = 0.135335283236613 

    S2Pi = 2.506628274631 

    If y0 <= 0# Then 

        Result = -MaxRealNumber 

        InvNormalDistribution = Result 

        Exit Function 

    End If 

     

    If y0 >= 1# Then 

        Result = MaxRealNumber 

        InvNormalDistribution = Result 
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        Exit Function 

    End If 

     

    code = 1# 

    Y = y0 

     

    If Y > 1# - Expm2 Then 

        Y = 1# - Y 

        code = 0# 

    End If 

     

    If Y > Expm2 Then 

        Y = Y - 0.5 

        Y2 = Y * Y 

        P0 = -59.9633501014108 

        P0 = 98.0010754186 + Y2 * P0 

        P0 = -56.676285746907 + Y2 * P0 

        P0 = 13.931260938728 + Y2 * P0 

        P0 = -1.23916583867381 + Y2 * P0 

        Q0 = 1# 

        Q0 = 1.95448858338142 + Y2 * Q0 

        Q0 = 4.67627912898882 + Y2 * Q0 

        Q0 = 86.3602421390891 + Y2 * Q0 

        Q0 = -225.462687854119 + Y2 * Q0 

        Q0 = 200.260212380061 + Y2 * Q0 

        Q0 = -82.0372256168333 + Y2 * Q0 

        Q0 = 15.9056225126212 + Y2 * Q0 

        Q0 = -1.1833162112133 + Y2 * Q0 

        x = Y + Y * Y2 * P0 / Q0 

        x = x * S2Pi 

        Result = x 

        InvNormalDistribution = Result 

        Exit Function 

    End If 

     

    x = Sqr(-(2# * Log(Y))) 

    X0 = x - Log(x) / x 

    z = 1# / x 

    If x < 8# Then 

        P1 = 4.05544892305962 

        P1 = 31.5251094599894 + z * P1 

        P1 = 57.1628192246421 + z * P1 

        P1 = 44.0805073893201 + z * P1 

        P1 = 14.6849561928858 + z * P1 

        P1 = 2.1866330685079 + z * P1 

        P1 = -(1.40256079171354 * 0.1) + z * P1 

        P1 = -(3.50424626827848 * 0.01) + z * P1 

        P1 = -(8.57456785154685 * 0.0001) + z * P1 
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        Q1 = 1# 

        Q1 = 15.7799883256467 + z * Q1 

        Q1 = 45.3907635128879 + z * Q1 

        Q1 = 41.3172038254672 + z * Q1 

        Q1 = 15.0425385692908 + z * Q1 

        Q1 = 2.50464946208309 + z * Q1 

        Q1 = -(1.42182922854788 * 0.1) + z * Q1 

        Q1 = -(3.80806407691578 * 0.01) + z * Q1 

        Q1 = -(9.33259480895457 * 0.0001) + z * Q1 

        x1 = z * P1 / Q1 

    Else 

        P2 = 3.23774891776946 

        P2 = 6.91522889068984 + z * P2 

        P2 = 3.93881025292474 + z * P2 

        P2 = 1.33303460815808 + z * P2 

        P2 = 2.01485389549179 * 0.1 + z * P2 

        P2 = 1.2371663481782 * 0.01 + z * P2 

        P2 = 3.01581553508235 * 0.0001 + z * P2 

        P2 = 2.65806974686738 * 0.000001 + z * P2 

        P2 = 6.23974539184983 * 0.000000001 + z * P2 

        Q2 = 1# 

        Q2 = 6.02427039364742 + z * Q2 

        Q2 = 3.67983563856161 + z * Q2 

        Q2 = 1.37702099489081 + z * Q2 

        Q2 = 2.16236993594497 * 0.1 + z * Q2 

        Q2 = 1.34204006088543 * 0.01 + z * Q2 

        Q2 = 3.28014464682128 * 0.0001 + z * Q2 

        Q2 = 2.89247864745381 * 0.000001 + z * Q2 

        Q2 = 6.79019408009981 * 0.000000001 + z * Q2 

        x1 = z * P2 / Q2 

    End If 

    x = X0 - x1 

     

    If code <> 0# Then 

        x = -x 

    End If 

     

    Result = x 

 

    InvNormalDistribution = Result 

End Function 

 

' Minimum function 

Private Function Min(vFirstVal As Variant, vSecondVal As Variant) As 

Variant 

 

    If (vFirstVal < vSecondVal) Then 

        Min = vFirstVal 
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    Else 

        Min = vSecondVal 

    End If 

 

End Function 

 

Function uutUnc(r As Double, uCal As Double, Llow As Double, LUp As 

Double) As Variant 

 ' Return the UUT bias std uncertainty 

' using the end of period rel and the 

' std uncertainty of the calibration process. 

' 

' Solves: 

' 

'   R = F(LUp/uDev) - F(LLow/uDev) 

'   uDev^2 = uUUT^2 + uCal^2 

'   F = The Normal Distribution function 

' 

' Inputs: 

'   R = The end of period measurement reliability 

'   uCal = The std uncertainty of the calibration process (1 sigma) 

'   LLow = The lower tolerance limit 

'   LUp = The upper tolerance limit 

' 

' Outputs: 

'   uUUT = The standard uncertainty for the UUT 

 

    Dim uDev As Double 

    Dim uUUT As Double 

    Dim uUUT2 As Double 

    Dim n As Double 

    Dim Rn As Double 

    Dim RootTwoPiInv As Double 

     

    ' Make sure the limits make sense. 

    If (Llow > LUp Or Llow >= 0 Or LUp <= 0) Then 

        n = (LUp + Llow) / 2 

        LUp = Abs(LUp - n) 

        Llow = -Abs(Llow - n) 

    End If 

     

    ' Get the deviation uncertainty. 

    ' (the uncertainty of the difference between the 

    '  UUT and the STD) 

     

    ' Symmetric Limits 

    If (LUp = -Llow) Then 

        uDev = LUp / InvNormalDistribution((1 + r) / 2) 
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    ' Asymmetric limits 

    Else 

        ' Initial value 

        uDev = (Abs(LUp) + Abs(Llow)) / 2 / InvNormalDistribution((1 + 

r) / 2) 

         

        ' Iteration - Newton's Method. 

        RootTwoPiInv = 0.564189583547756 

        Rn = CumNorm(LUp / uDev) - CumNorm(Llow / uDev) 

        Do While (Abs(Rn - r) > 0.000001) 

            uDev = uDev - (Rn - r) / _ 

                  (RootTwoPiInv / uDev ^ 2 * _ 

                  (Llow * Exp(-(Llow / uDev) ^ 2 / 2) - _ 

                   LUp * Exp(-(LUp / uDev) ^ 2 / 2))) 

            Rn = CumNorm(LUp / uDev) - CumNorm(Llow / uDev) 

        Loop 

    End If 

     

    ' Calculate the 1-sigma uncertainty of the UUT. 

    uUUT2 = uDev ^ 2 - uCal ^ 2 

     

    If (uUUT2 <= 0) Then 

        uUUT = 0 

    Else 

        uUUT = Sqr(uUUT2) 

    End If 

     

    ' Return the uncertainty 

    uutUnc = uUUT 

 

End Function 

 

Code courtesy of NWSC. (28)  
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