CPR for Confidence in Your Measurements

Dilip "Darth" Shah

emc3solu@aol.com

 $E = mc^3$ Solutions

Henry Zumbrun

hzumbrun@mhforce.com

Mhforce.com

Greg Cenker

greg.cenker@indysoft.com

IndySoft

www.indysoft.com

CPR for Confidence in Your Measurements

Proper Evaluation of Uncertainty

Minimum Contributors to Consider:

- □ Repeatability (Type A) (Testing Laboratory)
- Resolution (Testing Laboratory)
- Reproducibility (Type A) (Testing Laboratory)
- Reference Standard Uncertainty (Testing Laboratory)
- □ Reference Standard Stability
- Environmental Factors

Calculating Repeatability and Reproducibility

• Take Repeatability data, compile R&R. Sounds simple right?

	Tech 1	Tech 2	Tech 3
Nom. Value ->	100	100	100
1	100.000 309	99.999 849	99.999 929
2	100.000 328	100.000 095	100.000 026
3	100.000 058	99.999 <mark>8</mark> 21	100.000 192
4	100.000 149	100.000 102	100.000 001
5	100.000 304	100.000 022	100.000 081
6	99.999 830	100.000 136	99.999 833
7	100.000 139	100.000 506	99.999 744
8	100.000 213	99.999 669	100.000 025
9	100.000 353	99.999 681	100.000 072
10	100.000 271	99.999 820	100.000 227

Group Mean	100.000 060		
Mean	100.000 196	99.999 970	100.000 013
StdDev	0.000 160 30	0.000 254 91	0.000 148 48
DOF	9	9	9
Sum of Squares (SS)	2.31273E-07	5.84805E-07	1.984 <mark>1</mark> 3E-07
	Group (Tech) 1	Group (Tech) 2	Group (Tech) 3

Error of SS	1.01449E-06		
Total DOF	27	(in UOM)	
Repeatability	0.000 193 84	1.94	
Reproducibility	0.000 119 70	1.20	

Calculating Repeatability and Reproducibility

• Anything look out of place?

SUMMARY					
Groups	Count	Sum	Average	Variance	% of Total Variance
Tech 1	10	1000.001 955	100.000 196	25.697E-09	22.8%
Tech 2	10	999.999 701	99.999 970	64.978E-09	57.6%
Tech 3	10	1000.000 130	100.000 013	22.046E-09	19.6%

ANOVA - Single Factor

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.86563E-07	2	1.43282E-07	3.813351641	3.478%	3.354130829
Within Groups	1.01449E-06	27	3.75737E-08			

Total 1.30105E-06

29

Calculating Repeatability and Reproducibility

Sub Groups	1	2	3	4	5
1	0.9956	1.0087	1.0069	0.9927	1.0029
2	1.0092	1.0000	0.9938	1.0047	0.9908
3	1.0073	1.0014	0.9943	0.9913	1.0053
4	1.0049	0.9926	0.9921	0.9919	0.9956
5	0.9940	0.9986	0.9953	1.0070	0.9940
Sum	5.01100	5.00130	4.98240	4.98760	4.98860
Mean	1.00220	1.00026	0.99648	0.99752	0.99772
Range	0.01520	0.01610	0.01480	0.01570	0.01450
Standard Deviation	0.00695	0.00579	0.00594	0.00766	0.00613
Variance	0.000048	0.000034	0.000035	0.000059	0.000038
Repeatability (s _r)	0.006533	=SQRT(A	VERAGE(B11:	F11))	0.020
Reproducibility (s _R)	0.002338	=STDEV(B8:F8)		
$s_r^2 + s_R^2 =$	0.000048	$SQRT(s_r^2 + s_R^2) =$	0.006939084		
s _L ² =	-0.000003	s _L =	0.000000	$s_R =$ SQRT($s_r + s_L^2$) =	0.006533
s _L ² = s _{X-E}	$s_{L}^{2} = s_{X-Bar}^{2} - s_{r}^{2}/n$				
if s _L ² is negative, s	et s _L ² = 0 and				

Documented Measurement Uncertainty Budget.

Contributors	Magnitude	Туре	Distribution	Divisor	df	Std. Uncert.	Variance	% Contribution	u^4/df
Repeatability	19.950E-6	А	Normal	1	20	19.950E-6	398.000E-12	56.4%	7.920E-21
Reproducibility	16.793E-6	А	Normal	1	4	16.793E-6	282.000E-12	40.0%	19.881E-21
Resolution	10.000E-6	В	Resolution	3.464101615	100	2.887E-6	8.333E-12	1.2%	694.444E-27
Reference Standard Uncertainty	5.00E-06	В	k=2	2	100	2.500E-6	6.250E-12	0.9%	390.625E-27
Reference Standard Stability	3.00E-06	В	Rectangular	1.732050808	100	1.732E-6	3.000E-12	0.4%	90.000E-27
Environmental Factors	4.00E-06	В	U-Shaped	1.414213562	100	2.828E-6	8.000E-12	1.1%	640.000E-27
			Con	nbined Uncerta	ainty	26.563E-6	705.583E-12	100.0%	27.803E-21
			Effective Degrees of Freedom			17			
			k=			2.11			
			Exp	anded Uncerta	ainty	56.043E-6			

	1	2	3	4	5
1	1.00003	0.99997	1.00000	0.99997	0.99997
2	1.00002	0.99999	1.00002	1.00001	1.00002
3	1.00003	0.99998	1.00003	0.99998	1.00003
4	1.00000	1.00001	1.00003	0.99999	1.00003
5	0.99999	0.99998	1.00003	0.99997	0.99997
Sum	5.0001	4.9999	5.0001	4.9999	5.0000
Average	1.0000	1.0000	1.0000	1.0000	1.0000
Std. Dev.	18.166E-6	15.166E-6	13.038E-6	16.733E-6	31.305E-6
Variance	330.000E-12	230.000E-12	170.000E-12	280.000E-12	980.000E-12
Repeatability	19.950E-6				
Reproducibility	16.793E-6				

The Effect of UUT Resolution on Risk & Uncertainty

1 000.0 kgf load cell example with a resolution of 0.01 kgf

The Problem with Averages

A1	В	C	D	SELECTION OF GUARDBAND METHOD								
2	E = mc ³ Solutions	Reported Result	Acceptance Limit	Choose D Rule >>>	ecision	LAC G8:20	09 Decision	Rule(95%	########	Custom /	Acceptance .imit	2
3	Nominal Value	30000										
4	Lower Specification Limit	29700	INDETERMINATE	0.00014								
5	Upper Specification Limit	30300	INDETERMINATE							111		
6	Measured Value	30000.0000	30000.00	0.00012								
7	Std. Uncert. (k=1)	3.00E+3		0.00012								
8	Total Risk	92.032%							- 1			
9	Upper Limit Risk	46.016%		0.0001								
10	Lower Limit Risk	46.016%							1			
11	Test Uncertainty Ratio (TUR) =	0.05		0.00008								
12	Process Capability (Cpk)	0.033										
	Area below for	calculations		0.00000					1			
	Sample	Measurement		0.00000								
	1	32600.0									1	
	2	31300.0		0.00004							+	
	3	25300.0							1		1	
	4	32000.0		0.00002					-			
	5	28800.0										
	Sample Mean	30000.00										
	Sample Standard Deviation	2999.17		0	5000	10000	150.00	200.00	25000	30000	350.00 4.00	450.00
					5000	10000	13000	20000	23000	00000	400	
					-MV -	LSL -	Nominal Val	ue —U	SL -Ur	ncert. Dist	-LAL -	UAL
0.					1.000			DCA23 - OA		120203-0200		

Resolution in UNC budget

The Effect of UUT Resolution on Risk & Uncertainty

Resolution and the Effect on Total Risk Using a 1 000 kgf Morehouse Load Cell and Varying the Indicator Resolution

The risk starts to increase quite dramatically as the resolution increases so, does the overall uncertainty

When the resolution is 0.001 kgf, it is insignificant. At 0.01 kgf, it is 11.52 % of the overall budget, and when raised to 0.05 kgf, it becomes dominant.

Resolution

Accuracy and Precision

Instrument Bias

Nominal Value of **10** Measured Value of **11.75**, **Bias**

Instrument Measurement + 9 lbf Bias

Nominal Value	10000.0
Lower specification Limit	9990.0
Upper Specification Limit	10010.0
Measured Value	10009.0
Measurement Error	9.0
Std. Uncert. (k=1)	0.085
Total Risk	0.00%
Upper Limit Risk	0.000%
Lower Limit Risk	0.000%
TUR =	58.78943644
Cpk=	5.999032319
TAR=	62.5
Simple Guard Band (Subtra	ct Uncertainty)
Guard Band LSL	9990.170
Guard Band USL	10009.8299
Percent of Spec	98.30%
Guard Band Limits for Risk of	2.500%
Guard Band LSL	9990.167
Guard Band USL	10009.833

Graph Showing 10 009.0 as the measured value with a 58.789:1 TUR, which is achieved by using a lab with low uncertainties (Morehouse actual example) There is a bias of + 9 lbf in this example.

Instrument Measurement + 9 Bias

Force Applied	Measurement Value	Offset, Bias ,Systemic Measurement Error
10 000.00	10 009.00	+ 9
10 000.00	10 009.00	+ 9

When we make repeated measurements or have enough history on the device to know that replicate measurements will produce the same result, we have a known systematic error (Bias).

Bias – Centered Measurement

5.2.1.5 Risk with Biased Measurements

While the 4:1 TUR requirement is commonly used to ensure a measurement is adequate for making an accept/reject determination, this metric assumes that the process distribution is centered between the specification limits, that is $\mu_p = (SL_U + SL_L)/2$. If this is not the case, TUR cannot be reliably used as an indicator of risk, however, the PFA and PFR equations are still valid assuming the correct μ_p is used.

The measurement uncertainty distribution is also assumed to be centered about the actual value t when calculating TUR. The measurement process is said to be biased if it is not centered about t and systematically overstates or understates the true value of the measurement. Properly accounting for measurement bias provides a more accurate risk evaluation. If bias is ignored, the risk might be understated, perhaps significantly.

In the presence of bias, the distribution of the measurement y, given the actual value t, shifts from a $N(t, \sigma_m^2)$ distribution to a $N(t - b_m, \sigma_m^2)$ distribution, where b_m is the measurement bias.

With bias b_m , the expressions for the PFA and PFR (without guardbanding) become

$$PFA = \int_{-\infty}^{SL_{L}} \left(\int_{SL_{L}}^{SL_{U}} \frac{1}{\sigma_{m}\sqrt{2\pi}} e^{-\frac{1}{2\sigma_{m}^{2}}(y-(t-b_{m}))^{2}} dy \right) \frac{1}{\sigma_{p}\sqrt{2\pi}} e^{-\frac{1}{2\sigma_{p}^{2}}(t-\mu_{p})^{2}} dt + \int_{SL_{U}}^{+\infty} \left(\int_{SL_{L}}^{SL_{U}} \frac{1}{\sigma_{m}\sqrt{2\pi}} e^{-\frac{1}{2\sigma_{m}^{2}}(y-(t-b_{m}))^{2}} dy \right) \frac{1}{\sigma_{p}\sqrt{2\pi}} e^{-\frac{1}{2\sigma_{p}^{2}}(t-\mu_{p})^{2}} dt.$$
(5.18)

 Page 92 Section 5.2 Introduction to Statistics in Metrology

What happens when we do not correct the bias?

	Measurement	BIAS	BIAS CORRECTED		
	Uncertainty $k = 2$	Measured Value With Bias	Measured Value Bias Removed		
Primary	0.17	9991.0	10000.0		
Reference (TUR 4:1)	2.5	9989.0	10000.0		
Working (TUR 3:1)	3.3	9987.0	10000.7		
General (TUR 2:1)	5	9989.0	10000.5		
Process (TUR 1:1)	10	9980.0	10000.6		

Not correcting for Bias

The Figure above shows what happens when the reference laboratory does not correct for bias and applies 9,991.0 lbf and not 10,000 lbf.

In this scenario, instruments may have failed when they would have passed calibration.

Metrological Traceability

 Metrological Traceability: Property of a measurement result whereby the result can be related to a reference through a <u>documented unbroken chain of calibrations, each</u> <u>contributing to the measurement uncertainty.</u>

•NOTE 1 For this definition, a 'reference' can be a definition of a measurement unit through its practical realization, or a measurement procedure including the measurement unit for a non-ordinal quantity, or a measurement standard.

•NOTE 2 Metrological traceability requires an established calibration hierarchy.

•NOTE 3 Specification of the reference must include the time at which this reference was used in establishing the calibration hierarchy, along with any other relevant metrological information about the reference, such as when the first calibration in the calibration hierarchy was performed.

•NOTE 4 For measurements with more than one input quantity in the measurement model, each of the input quantity values should itself be metrologically traceable.

Metrological Traceability

Measurement Uncertainty Data is cumulative from one level of hierarchy to another!

PROCESS MEASUREMENT (0.1)

Metrological Traceability

Metrological Traceability

The Correct Definition and Calculation of TUR

 $TUR = \frac{Span \text{ of the } \pm \text{ UUT Tolerance}}{2 \text{ x } k_{95\%}(\text{Calibration Process Uncertainty})}$ TUR Formula found in ANSI/NCSLI Z540.3 Handbook

- The ratio of the span of the tolerance of a measurement quantity subject to calibration to twice the 95% expanded uncertainty of the measurement process used for calibration. ANSI/NCSLI Z540.3-2006
- The ratio of the tolerance, TL, of a measurement quantity, divided by the 95% expanded measurement uncertainty of the measurement process where TUR = TL/U. ILAC G8:2019

TUR Defined ANSI/NCSL Z540.3 Handbook

 $TUR = \frac{Span \text{ of the } \pm \text{ UUT Tolerance}}{2 \text{ x } k_{95\%}(\text{Calibration Process Uncertainty})}$ TUR Formula found in ANSI/NCSLI Z540.3 Handbook

"For the numerator, the tolerance used for Unit Under Test (UUT) in the calibration procedure should be used in the calculation of the TUR. This tolerance is to reflect the organization's performance requirements for the Measurement & Test Equipment (M&TE), which are, in turn, derived from the intended application of the M&TE. In many cases, these performance requirements may be those described by the Manufacturer's tolerances and specifications for the M&TE and are therefore included in the numerator."

ANSI/NCSL Z540.3 Handbook "Handbook for the Application of ANSI/NCSLI 540.3-2006 - Requirements for the Calibration of Measuring and Test Equipment."

The Correct Definition and Calculation of TUR

Example of a TUR Formula (Adapted from the ANSI/NCSL Z540.3 Handbook)

In most cases, the numerator is the UUT Accuracy Tolerance. The denominator is slightly more complicated. Per the ANSI/NCSL Z540.3 Handbook, "For the denominator, the 95 % expanded uncertainty of the measurement process used for calibration following the calibration procedure is to be used to calculate TUR. The value of this uncertainty estimate should reflect the results that are reasonably expected from the use of the approved procedure to calibrate the M&TE. Therefore, the estimate includes all components of error that influence the calibration measurement results, which would also include the influences of the item being calibrated except for the bias of the M&TE. The calibration process error, therefore, includes temporary and non-correctable influences incurred during the calibration such as **repeatability, resolution**, error in the measurement source, operator error, error in correction factors, environmental influences, etc."

Measurement Decision Risk

ISO/IEC 17025: 2017 Section 3.7 defines a decision rule as a rule that describes how measurement uncertainty is accounted for when stating conformity with a specified requirement

A calibration laboratory cannot make a statement of conformity or "Pass" an instrument without violating ISO/IEC 17025:2017 as section 3.7 defines a Decision Rule as a rule that describes how measurement uncertainty is accounted for when stating conformity with a specified requirement. Some may argue that you can take it into account by ignoring it.

To that end can we all decide to take all red stop lights into account and start ignoring them?

Global Consumers' Risk in Evaluation of Decision Rules

Selecting the Appropriate Decision Rules

3. *Note: The formula to determine "In-Tolerance" Probability from historical data is SampleSize = In(1-Confidence)/In(Target _{Reliability})

Selecting the Appropriate Decision Rules

TUR

Global Consumers' Risk in Evaluation of Decision Rules

Global consumer's risk is defined in JCGM 106:2012. The role of CPU in conformity assessment is defined as "the probability that a non-conforming item will be accepted based on a future measurement result."

If only one tier of the calibration chain cares about the measurement decision risk, then the whole process is at risk. When this risk is propagated throughout succeeding tiers, can we expect the process to work properly?

Why Cpk Might be the Most Useful Tool in Making Conformity Decisions

CpK = min(((USL-Measured Value)/ 3 x Std. Uncertainty)),((Measured Value – LSL)/3 x Std. Uncertainty)))

Why Cpk Might be the Most Useful Tool in Making Conformity Decisions

Std Und

k = 1 🗔	TUR 🗸	Pcent 🗟	Lower Limit 🕫	Upper Limit	Measured Value	P(In-Tol)	P(00T) -	LL Risk -	UL Risk 🗸	Total Risk -	Cpk -
0.004 808	1.04	3.85%	100.000	100.000	100.000	96.19%	3.81%	1.54%	2.27%	3.81%	0.6667
0.004 386	1.14	12.28%	99.999	100.001	100.001	97.20%	2.80%	0.52%	2.27%	2.80%	0.6667
0.003 906	1.28	21.87%	99.998	100.002	100.002	97.63%	2.37%	0.09%	2.28%	2.37%	0.6667
0.003 676	1.36	26.47%	99.997	100.003	100.003	97.70%	2.30%	0.03%	2.28%	2.30%	0.6667
0.003 333	1.5	33.33%	99.997	100.003	100.003	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.003 125	1.6	37.50%	99.996	100.004	100.004	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002 941	1.7	41.18%	99.996	100.004	100.004	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002 778	1.8	44.44%	99.996	100.004	100.004	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002.632	1.9	47.37%	99.995	100.005	100.005	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002 500	2	50.00%	99.995	100.005	100.005	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002 381	2.1	52.38%	99.995	100.005	100.005	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.002 273	2.2	54.55%	99.995	100.005	100.005	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002 174	2.3	56.52%	99.994	100.006	100.006	97.72%	2.28%	0.00%	2.27%	2.28%	0.6667
0.002.083	2.4	58.33%	99.994	100.006	100.006	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.002.000	2.5	60.00%	99.994	100.006	100.006	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001923	2.6	61.54%	99.994	100.006	100.006	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001852	2.7	62.96%	99.994	100.006	100.006	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001 786	2.8	64.29%	99.994	100.006	100.006	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001724	2.9	65.52%	99.993	100.007	100.007	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001667	3	66.67%	99.993	100.007	100.007	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 613	3.1	67.74%	99.993	100.007	100.007	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001563	3.2	68.75%	99.993	100.007	100.007	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 515	3.3	69.70%	99.993	100.007	100.007	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001 471	3.4	70.59%	99.993	100.007	100.007	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001 429	3.5	71.43%	99.993	100.007	100.007	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 389	3.6	72.22%	99.993	100.007	100.007	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 351	3.7	72.97%	99.993	100.007	100.007	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001 316	3.8	73.68%	99.993	100.007	100.007	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001282	3.9	74.36%	99.993	100.007	100.007	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001 250	4	75.00%	99.993	100.007	100.007	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 217	4.11	75.67%	99.992	100.008	100.008	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 190	4.2	76.19%	99.992	100.008	100.008	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 163	4.3	76.74%	99.992	100.008	100.008	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001 136	4.4	77.27%	99.992	100.008	100.008	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001 111	4.5	77.78%	99.992	100.008	100.008	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001087	4.6	78.26%	99.992	100.008	100.008	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001064	4./	/8./2%	99.992	100.008	100.008	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001042	4.8	79.17%	99.992	100.008	100.008	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667
0.001020	4.9	/9.59%	99.992	100.008	100.008	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.001000	5	80.00%	99.992	100.008	100.008	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.000 746	6.7	85.07%	99.991	100.009	100.009	97.72%	2.28%	0.00%	2.28%	2.28%	0.6667
0.000 500	10	90.00%	99.991	100.009	100.009	97.73%	2.27%	0.00%	2.27%	2.27%	0.6667

Why Cpk Might be the Most Useful Tool in Making Conformity Decisions

QR Codes

• Giveaways Resolution Sheet

Risk Sheet

Want More Information?

YouTube Videos

Dilip Finds your Lack of Measurement Uncertainty Disturbing

#1 CMC Calculation Made Easy Tool for Force Uncertainty

Are you having problems figuring out all of the requirements to calculate a CMC for force uncertainty or torque uncertainty? This excel sheet provides a template to calculate CMCs (force uncertainty) with explanations of everything required to pass an ISO/IEC 17025 audit.

Morehouse Free Force Uncertainty Spreadsheet to Calculate Calibration and Measurement Capability Uncertainty

Morehouse Free Downloads

https://www.workshop.indysoft.com/